numpy向量转换为矩阵_Numpy之将矩阵拉成向量的实例

Numpy之将矩阵拉成向量的实例

废话不多说,直接上代码吧!

# 矩阵操作

# 将矩阵拉成向量

import numpy as np

x = np.arange(10).reshape(2,5)

print(x)

y1 = x.ravel()

y2 = x.flatten()

print("y1: ",y1," y2: ",y2)

print(x)

"""

打印结果:

[[0 1 2 3 4]

[5 6 7 8 9]]

y1: [0 1 2 3 4 5 6 7 8 9] y2: [0 1 2 3 4 5 6 7 8 9]

[[0 1 2 3 4]

[5 6 7 8 9]]

"""

以上这篇Numpy之将矩阵拉成向量的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2019-11-28

在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作. 归纳一下,下面的代码主要做了这些事: 创建一个向量 创建一个矩阵 创建一个稀疏矩阵 选择元素 展示一个矩阵的属性 对多个元素同时应用某种操作 找到最大值和最小值 计算平均值.方差和标准差 矩阵变形 转置向量或矩阵 展开一个矩阵 计算矩阵的秩 计算行列式 获取矩阵的对角线元素 计算矩阵的迹 计算特征值和特征向量 计算点积 矩阵的相加相减 矩阵的乘法 计算矩阵的逆 一起来看代码吧: # 加载n

以下的例子,将32x32的二维矩阵,装换成1x1024的向量 def image2vector (filename): returnVect=zeros((1,1024)) f=open(filename) for i in range (32): lineStr =fr.readline() for j in range (32): returnVect[0,32*i*j]=int(lineStr[j]) return returnVect 以上这篇Numpy 将二维图像矩阵转换为一维向量的方

在当前目录下: 方法1: file = open('filename') a =file.read() b =a.split('\n')#使用换行 len(b) #统计有多少行 for i in range(len(b)): b[i] = b[i].split()#使用空格分开 len(b[0])#可以查看第一行有多少列. B[0][311]#可以查看具体某行某列的数 import numpy as np b = np.array(b)#转成numpy形的 type(b) # 输出

在PCA中有遇到,在这里记录一下 计算矩阵的特征值个特征向量,下面给出几个示例代码: 在使用前需要单独import一下 >>> from numpy import linalg as LA >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>>

最近在看机器学习的 LogisticRegressor,BayesianLogisticRegressor算法,里面得到一阶导数矩阵g和二阶导数Hessian矩阵H的时候,用到了这个模块进行求解运算,记录一下. numpy.linalg模块包含线性代数的函数.使用这个模块,可以计算逆矩阵.求特征值.解线性方程组以及求解行列式等. import numpy as np # 1. 计算逆矩阵 # 创建矩阵 A = np.mat("0 1 2;1 0 3;4 -3 8") print (A)

本文主要讲解利用Eigen库计算矩阵的特征值及特征向量并与Matlab计算结果进行比较. C++Eigen库代码 #include #include #include using namespace Eigen; using namespace std; void Eig() { Matrix3d A; A << 1, 2, 3, 4, 5, 6, 7, 8, 9; c

计算矩阵标准差 >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) # 计算全局标准差 1.1180339887498949 >>> np.std(a, axis=0) # axis=0计算每一列的标准差 array([ 1., 1.]) >>> np.std(a, axis=1) # 计算每一行的标准差 array([ 0.5, 0.5]) 官方手册:http://docs.scipy.

简单介绍 NumPy系统是Python的一种开源的数组计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). 创建数组 创建1维数组: data = np.array([1,3,4,8]) 查看数组维度 data.shape 查看数组类型 data.dtype 通过索引获取或修改数组元素 data[1] 获取元素 data[1] = 'a' 修改元素 创建二维数组 data

np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数. 函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ③axis:处理类型 axis=1表

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 创建常见的矩阵 data1=mat(zeros((3,3)));

本文实例讲述了Python中shape计算矩阵的方法.分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>> from numpy import * >>> import operator >>> a =mat([[1,2,3],[5,6,9]]) >>> a matrix([[1, 2, 3], [5, 6, 9]]) >>> shape(a) (2,

采用最小二乘的求逆方法在大部分情况下是低效率的.特别地,当局镇非常大时效率更低.另外一种实现方法是矩阵分解,此方法使用tensorflow内建的Cholesky矩阵分解法.Cholesky矩阵分解法把一个矩阵分解为上三角矩阵和下三角矩阵,L和L'.求解Ax=b,改写成LL'=b.首先求解Ly=b,然后求解L'x=y得到系数矩阵. 1. 导入编程库,初始化计算图,生成数据集.接着获取矩阵A和b. >>> import matplotlib.pyplot as plt >>&gt

本文实例讲述了C#计算矩阵的逆矩阵方法.分享给大家供大家参考.具体如下: 1.代码思路 1)对矩阵进行合法性检查:矩阵必须为方阵 2)计算矩阵行列式的值(Determinant函数) 3)只有满秩矩阵才有逆矩阵,因此如果行列式的值为0(在代码中以绝对值小于1E-6做判断),则终止函数,报出异常 4)求出伴随矩阵(AdjointMatrix函数) 5)逆矩阵各元素即其伴随矩阵各元素除以矩阵行列式的商 2.函数代码 (注:本段代码只实现了一个思路,可能并不是该问题的最优解) ///

  • 0
    点赞
  • 3
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
评论

打赏作者

企鹅吃喝指南

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值