bool查询原理 es_elasticsearch 百亿级数据检索案例与原理

本文探讨了在面对每日过亿数据的业务系统中,如何利用Elasticsearch(ES)实现跨月查询及历史数据检索。通过对ES和Lucene的基本结构、索引原理的介绍,提出了针对数十亿数据的优化策略,包括批量写入、关闭不必要的doc values、优化检索性能等。实测显示,百亿数据的查询能在3秒内返回结果。
摘要由CSDN通过智能技术生成

622b6baae64b6b8166c5f09a08ec8d5a.gif

一、前言

数据平台已迭代三个版本,从头开始遇到很多常见的难题,终于有片段时间整理一些已完善的文档,在此分享以供所需朋友的

实现参考,少走些弯路,在此篇幅中偏重于ES的优化,关于HBase,Hadoop的设计优化估计有很多文章可以参考,不再赘述。

【目前生产已存储百亿数据,性能良好(但未使用分词功能)】

二、需求说明

项目背景:

  在一业务系统中,部分表每天的数据量过亿,已按天分表,但业务上受限于按天查询,并且DB中只能保留3个月的数据(硬件高配),分库代价较高。

改进版本目标:

1.数据能跨月查询,并且支持1年以上的历史数据查询与导出。

2.按条件的数据查询秒级返回。

三、elasticsearch检索原理

    3.1 关于ES和Lucene基础结构

    谈到优化必须能了解组件的基本原理,才容易找到瓶颈所在,以免走多种弯路,先从ES的基础结构说起(如下图):

c7af58a0ecd527d7015fabeeb669f677.png

    一些基本概念:

        Cluster          包含多个Node的集群

        Node             集群服务单元

        Index             一个ES索引包含一个或多个物理分片,它只是这些分片的逻辑命名空间

        Type              一个index的不同分类,6.x后只能配置一个type,以后将移除

        Document    最基础的可被索引的数据单元,如一个JSON串

        Shards          一个分片是一个底层的工作单元,它仅保存全部数据中的一部分,它是一个Lucence实例 (一个lucene索引最大包含2,147,483,519 (= Integer.MAX_VALUE - 128)个文档数量)

       Replicas       分片备份,用于保障数据安全与分担检索压力

ES依赖一个重要的组件Lucene,关于数据结构的优化通常来说是对Lucene的优化,它是集群的一个存储于检索工作单元,结构如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值