matlab在光学实验中的应用,matlab在光学实验中的应用

41528d3028836879cd698677c3999917.gifmatlab在光学实验中的应用

《MATLAB》课程论文MATLAB 在光学实验中的应用姓名:学号:专业:班级:指导老师:学院:完成日期:1MATLAB 在波动光学中的应用(姓名:郑苗苗 12012241736 2012 级电气三班)[摘要]在大学物理中有一部分是关于光学实验的内容,而 MATLAB 是用于科学和工程计算的一种著名软件,物理中光学部分涉及比较多的图形问题。光学的许多结论就是通过比较图形来的。光栅常数变了,图形会变化,入射光波长变了,图形也会变化,所以对其进行手工绘图有较大的困难,而 MATLAB语言的功能之一就是有强大的绘图功能。利用 MATLAB 的这一特点就可以绘制大量的图形,既减少绘图的工作量,不受实验一起和实验场所的限制,节约了时间,又便于分析比较图形,加深对实验结论的理解,还可以培养知识应用的能力。将 Matlab 软件和光学有机的结合起来,能够直观的建立物理现象,更形象的说明问题。以下主要分析介绍了夫朗禾费单缝衍射,多缝衍射和圆孔衍射以及杨氏双缝干涉,薄膜干涉和牛顿环的干涉等理论,用 Matlab 软件编写相应程序然后进行计算机模拟,有助于理解和研究衍射和干涉的理论。[关键词]Matlab 语言 光学 图形绘制 衍射 干涉一:问题的提出随着科技的发展,MATLAB 语言已从一个“矩阵实验室”变成了一个广泛应用于工程计算和数值图形分析领域的新型高级语言,集数值计算、符号运算、可视化建模、图形绘制及处理等多种功能为一体。尤其是在科研工程领域中,MATLAB 语言已经广泛应用于科学研究和解决各种具体的实际问题,简化了过程,节约了时间,消除了实验仪器和实验场所受限制这一客观存在的困难。在大学物理中,光学章节的许多结论都是通过比较分析图形而得到的,而光学中参数的变化个数比较多,如光栅常数、入射光波长、入射角等,参数的变化范围比较丰富,如光栅常数可以取很多值,入射角可以取 0~π 之间的任意一个角度等,而参数的变化会影响到图形的表现,这样为了解决问题就需要做大量的实验,来绘制许多的图形,否则就需要根据数学公式通过数学计算绘制图形,其工作量非常大。而且,实验还会受到实验仪器和实验场所的限制,如要观察一个实验室没有的光栅的相对光强那实验是无法进行的。而MATLAB 语言的功能之一就在于有强大的绘图功能,研究大学物理光学问题的困难在于大量的重复性的实验和图形的绘制。那么,我们如何利用 MATLAB 语言来解决大学物理中研究分析光学中所遇到的的图形绘制复杂的问题呢?二:夫朗禾费单缝衍射由基础光学可知,任意衍射屏的夫琅禾费衍射可借助两个透镜来实现.如图1-1所示,位于透镜L。物方焦平面上的点源S所发出的单色球面光波经L。变换为一束平面光波,照射在衍射屏AB上。按照平面波理论,衍射屏开口处的波前向各个方向发出次波,方向彼此相同的衍射次波经透镜 会聚到其像方焦平面的同一点P上。 满足相长干涉条件时,该点为亮点;满足相消干涉条件时,该点为暗点。所有亮点和暗点的集合构成了该衍射屏的夫琅禾费衍射图样。其次,从傅里叶光学角度,任意衍射屏在单位振幅的单色平面波垂直照射下,其夫琅禾费衍射光场复振幅即衍射屏透射系数的傅里叶变换,而衍射图样实际上就是衍射屏的空间频谱强度分布。求接受屏上的衍射强度分布可以通过求解衍射几分公式,得到屏上的复振幅分布,然后再计算光强分布。由于衍射孔径,即光强分布比较小,因而可以认为衍射光是满足近轴条件的,我们可以采用数值积分法得夫朗禾费衍射光强公式:2(1)20sin()IPI图1-1 夫朗禾费衍射实验装置图程序如下:用 Matlab 编程进行模拟,得到的强度分布曲线和模拟图如图 1-2 所示,即为明暗交错的条纹,且缝宽越大,衍射条纹越细。3图 1-2 单缝衍射模拟及强度分布三:夫朗禾费多缝衍射如果单缝沿着衍射屏平移,而衍射装置的其它部分不变,则衍射的强度分布将不会发生改变。因而对于多缝衍射屏来说,其中每一个单缝,即每一个衍射单元在接收屏上所产生的衍射条纹都是相同的。但来自不同狭缝的光由于相干性,相互间进行相干叠加,对于衍射光栅来说,既有来自每一个衍射单元的波列各自的衍射,也有来自不同单元(狭缝)的波列之间的干涉。如果光栅只有两条狭缝,N=2,则衍射光强为I=4I0cos2β(sin u)/u (2)运行程序如下:4运行结果如图 2-1: 图 2-1 多缝衍射模拟及强度分布图3、夫朗禾费矩孔衍射将单缝换成矩孔,就可以再接收屏上观察到矩孔的夫朗禾费衍射图样了,其光强度分布如下式:(3) 2210sini())(uIP5Matlab 程序:由衍射图可知它的中央是一个很亮的圆斑,外面分布着几圈很淡的光环,具有二维衍射强度分布,如图 3-1 所示:图 3-1 矩孔衍射模拟及强度分布图4、夫朗禾费圆孔衍射6如图 4-1 所示,Q 点发出任意方向光线 ,与光轴间的夹角为 ,过中心 O 作与 同rr方向光线 ,取坐标系如下: 和轴线所在平面为 XOZ 平面,Z 为光轴,过 Q 作与 、0r0r垂直的平面,与 和 X 轴分别交与 B、A 点。则 AB 与 垂直, 与 YOZ 平面的夹角为 ,00 0r0 A,Q 两点发出的次波是等光程的。光强: 210()()JmIP图 4-2 圆孔夫朗禾费衍射动画模拟图图 4-1 夫朗禾费圆孔衍射7用 Matlab 编程进行模拟,得到动画模拟图如图 4-2 所示,即同心圆环,明暗交错,不等距,中央主极大(零级斑)为一圆形亮斑,其能量约占衍射光能总能量的 84%,称为艾里斑。光强: (4)210()()JmIP五、杨氏双缝干涉光的干涉是光学中又一重要的物理现象,频率相同的两列波进行叠加,使某些区域的振动始终加强,某些区的域振动减弱,且加强区域与减弱区域相间隔,这种现象称为光的干涉。图 5-1 杨氏干涉实验中分光波示意图杨氏双缝干涉的实验装置可以用图 5-1 表示,其物理过程可以这样描述:光源所发出的大量光波,其中的每一例经过上述装置后,便为两列相干光,进行相干叠加,形成一个干涉花样,即形成一个光强的分布,这是第一个过程,可以用数学表达式如下:在时刻 t,光源中第 i 个原子跃迁发出的波记为 ,该列波经分光装置后分为 、iU1iU两部分。这两部分到达场点 P 时振幅为 、 相位差为 ,这两列波在 P 点的2iU1iA2i i干涉强度为 ,但是,同一时间总是有大量的原子跃迁,并发2112cosiiiiIA出大量的互不相干的波列。每一的波列,到达场点 P 都经历一个自我干涉的过程,不同的光波之普通光源单狭缝双狭缝接收屏8间,由于是不相干的,则直接进行光强相加,这是第二个过程,即 1NiIi由干涉装置可以看出,式中的相位差 取决于单缝、双缝、场点 P 的相对位置,所i以,在同一干涉装置中,对于所有的波列,上述 都是相同的,即可表示为 。i i1rr 2rNNNN2S1S 10r P DD0P0rd屏图 5-2 杨氏双

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值