数独是一个我们都非常熟悉的经典游戏,运用计算机我们可以很快地解开数独难题,现在有一些简单的数独题目,请编写一个程序求解。
输入描述:
输入9行,每行为空格隔开的9个数字,为0的地方就是需要填充的。
输出描述:
输出九行,每行九个空格隔开的数字,为解出的答案。
分析:
这里的数独就是9行9列的数组,满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。
这里粗线宫要分清楚,开始我以为是任意的九宫格内的1-9都不重复,实际这里是自己想复杂了,只需要满足如下图所示的阴影区域划分出的九个宫格1-9不重复就好了,总共就9共宫格,不是自己理解的7*7=49个小宫格,这里要弄清楚。
解题思路:DFS深度填数检测+回溯法
1,先把有数字的地方设置标记位为true
2,循环遍历数组中没有标记位true的地方,也就是需要填数的地方
1) 如果当前为0,即a[i][j]==0,判断当前所在的九宫格,然后从数字1-9依次检测是否在行、列、宫中唯一。
(1) 满足唯一的话,则吧数字赋值给a[i][j]=l+1;然后继续深度遍历为true的话就返回true,否则回溯a[i][j]==0等。
(2) 不满足满足唯一则判断下一个数字,直到1-9都判断不满足则返回false,会回溯到上一层。
2) 如果当前没有0,说明都已经填满且符合唯一条件,则返回true;结束。
具体代码如下:
import java.util.Scanner;
/**
* 创建时间:2017-1-11
*
* @author Dsz
*/
public class ShuDu3 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNextInt()) {
int[][] a = new int[9][9];
boolean[][] cols = new boolean[9][9];
boolean[][] rows = new boolean[9][9];
boolean[][] blocks = new boolean[9][9];// 九大宫的九个数字
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a.length; j++) {
a[i][j] = sc.nextInt();
if (a[i][j] != 0) {
// 划分九宫格,这里以行优先,自己也可以列优先
int k = i / 3 * 3 + j / 3;
int val = a[i][j] - 1;
rows[i][val] = true;
cols[j][val] = true;
blocks[k][val] = true;
}
}
}
// 数据装载完毕
DFS(a, cols, rows, blocks);
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 8; j++) {
System.out.print(a[i][j] + " ");
}
System.out.println(a[i][8]);
}
}
}
public static boolean DFS(int[][] a, boolean[][] cols, boolean[][] rows,
boolean[][] blocks) {
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (a[i][j] == 0) {
int k = i / 3 * 3 + j / 3;
for (int l = 0; l < 9; l++) {
// l对于的数字l+1没有在行列块中出现
if (!cols[j][l] && !rows[i][l] && !blocks[k][l]) {
rows[i][l] = cols[j][l] = blocks[k][l] = true;
// 下标加1
a[i][j] = 1 + l;
if (DFS(a, cols, rows, blocks))
// 递进则返回true
return true;
// 递进失败则回溯
rows[i][l] = cols[j][l] = blocks[k][l] = false;
a[i][j] = 0;
}
}
// a[i][j]==0时,l发现都不能填进去
return false;
}// the end of a[i][j]==0
}
}
return true;// 没有a[i][j]==0,则返回true
}
}
输出结果:
8 0 0 0 0 0 0 0 0
0 0 3 6 0 0 0 0 0
0 7 0 0 9 0 2 0 0
0 5 0 0 0 7 0 0 0
0 0 0 0 4 5 7 0 0
0 0 0 1 0 0 0 3 0
0 0 1 0 0 0 0 6 8
0 0 8 5 0 0 0 1 0
0 9 0 0 0 0 4 0 0
8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2