在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

(1)两个集合容斥关系

(2)三个集合容斥关系

 

公式:

HDU1796How many integers can you find(容斥原理)_#include

 这就是所谓的奇加偶减。

贴个模版题:

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1796

题目解析:

这个题有bug,m可能为0。然后知道奇加偶减这个东西后,就可以深搜了,将所有组合情况全列出来,然后求lcm就好了。

求1~(n-1)中被集合m中元素中整除的个数,没学容斥原理之前做这题肯定是会超时的。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
int n,m,top;
__int64 a[12];
int gcd(int A,int B)
{
    return B==0?A:gcd(B,A%B);
}
//now为当前点,num为已经加入容斥的个数,lcm记录容斥的过程值(lcm),结果
void dfs(int now,int num,__int64 lcm,__int64 &sum)
{
    lcm=a[now]/gcd(a[now],lcm)*lcm;
    if(num&1) sum+=(n-1)/lcm;
    else sum-=(n-1)/lcm;
    for(int i=now+1; i<top; i++)
        dfs(i,num+1,lcm,sum);
}
int main()
{
    int xx;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        top=0;
        for(int i=0; i<m; i++)
        {
            scanf("%d",&xx);
            if(xx!=0)
            {
                a[top++]=xx;
            }
        }
        __int64 sum=0;
        for(int i=0; i<top; i++)
        {
            dfs(i,1,a[i],sum);
        }
        printf("%I64d\n",sum);
    }
    return 0;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.