eaxsinbx_一类指数信号与正弦信号相乘的不定积分注记

本文提供了一种不同于传统教科书的解决指数信号eaxcosbx和eaxsinbx不定积分的方法,强调分部积分法的多次应用和内在联系。通过解析和图像,阐述了这些积分在信号处理中的意义,指出它们对应不同类型的信号波形。此外,详细展示了I1=eaxcosbxdx和I2=eaxsinbxdx的解法,促进对不定积分技巧的理解和记忆。
摘要由CSDN通过智能技术生成

数学分析教材[1]介绍了分部积分法求不定积分I1=eaxcosbxdx(1.1)和I2=eaxsinbxdx,(1.2)对I1与I2各自使用一次分部积分后联立解关于I1与I2方程组aI1-bI2=eaxcosbx+c1,bI1-aI2=eaxsinbx+c2烅烄烆,(1.3)得出I1与I2的原函数全体.这种解法是基于分部积分法和方程组的联姻.为了更大地激起学生的学习乐趣和热情,推动学生灵活、深入地掌握不定积分的基本方法,本文采取另外一种解决方案.一方面避免照本宣科之嫌,另一方面尝试从多角度来审视这种类型的不定积分,并给出记忆化、统一化的创新尝试.由于初学者知识面的制约,他们对这类陌生或奇怪的被积函数形式eaxcosbx,eaxsinbx不知道有何深层含义,学起来只是为了熟悉一下分部积分的操作手法,学完了也只能为了应付考试获得学分.为此,从信号与系统的角度(参见[2]),指出数学表达式f1(t)=keat,f2(t)=ksin(bt+)=kcossinbt+ksincosbt,f3(t)=eatcosbt,f4(t)=keatsinbt,f5(t)=keat+ibt=keat(cosbt+isinbt),都蕴含有非凡的背景,分别表示指数信号、正余弦信号、增长或衰减正(余)弦信号、复指数信号随着时间t变化的数学表达式,并绘制出的函数图像就是信号的波形[2],这里k为振幅.从可视化的角度指出微分、不定积分在信号处理中起到的功效.2不定积分I1与I2的讨论本节将提出与文献[1](p188-189)不同的解决方案(原方案见(1.3)),并从记忆方式及统一层面上予以分析.2.1对(1.1)和(1.2)重复两次分部积分法为了突出分部积分在若干次使用之后,显现与原不定积分同类的项,进而采用移项合并来完成求解,虽然这种方案存在有“冗长”,重复交叠部分不鲜明的缺陷.而采用求解方程组(1.3)的方法,似乎掩盖了相同积分项的呈现,也降低了学生进行二次分部积分的能力训练.2.1.1I1=eaxcosbxdx的解法由分部积分法或积分的线性法则,利用eaxcosbx=eax()acosbx=eaxacos()bx-eaxa(cosbx)=1aeaxcos()bx+baeaxsinbx.(2.1)得I1=1aeaxcosbx+baeaxsinbxdx.(2.2)又注意到eaxsinbx=eax()asinbx=eaxasin()bx-eaxa(sinbx)=1aeaxsin()bx-baeaxcosbx,(2.3)再利用分部积分法或积分的线性法则,得eaxsinbxdx=1aeaxsinbx-baeaxcosbxdx(2.4)=1aeaxsinbx-baI1.(2.5)将(2.5)代入(2.2),得I1=1aeaxcosbx+ba2eaxsinbx-b2a2I1.移项,得1+b2a()2I1=1a2eaxa(cosbx+bsinbx)+C1.(2.6)于是I1=1a2+b2eaxa(cosbx+bsinbx)+a2a2+b2C1.(2.7)即eaxcosbxdx=1a2+b2eaxa(cosbx+bsinbx)+C.(2.8)2.1.2.I2=eaxsinbxdx的解法II首先由(2.4),利用分部积分法,得I2=1aeaxsinbx-baeaxcosbxdx.(2.9)将(2.2)代入(2.9),得I2=1aeaxsinbx-ba1aeaxcosbx+baI()2.(2.10)移项,得a2+b2a2I2=1a2eaxa(sinbx-bcosbx)+C1.(2.11)由上式得I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值