eaxsinbx_二阶常系数齐次线性微分方程求解方法

41528d3028836879cd698677c3999917.gif二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y¢¢+py¢+qy=0 称为二阶常系数齐次线性微分方程, 其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y=C1y1+C2y2就是它的通解. 我们看看, 能否适当选取r, 使y=erx 满足二阶常系数齐次线性微分方程, 为此将y=erx代入方程 y¢¢+py¢+qy=0 得 (r 2+pr+q)erx =0. 由此可见, 只要r满足代数方程r2+pr+q=0, 函数y=erx就是微分方程的解. 特征方程: 方程r2+pr+q=0叫做微分方程y¢¢+py¢+qy=0的特征方程. 特征方程的两个根r1、r2可用公式 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r1、r2时, 函数、是方程的两个线性无关的解. 这是因为, 函数、是方程的解, 又不是常数. 因此方程的通解为 . (2)特征方程有两个相等的实根r1=r2时, 函数、是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, 是方程的解, 又 , 所以也是方程的解, 且不是常数. 因此方程的通解为 . (3)特征方程有一对共轭复根r1, 2=a±ib时, 函数y=e(a+ib)x、y=e(a-ib)x是微分方程的两个线性无关的复数形式的解. 函数y=eaxcosbx、y=eaxsinbx是微分方程的两个线性无关的实数形式的解. 函数y1=e(a+ib)x和y2=e(a-ib)x都是方程的解, 而由欧拉公式, 得 y1=e(a+ib)x=eax(cosbx+isinbx), y2=e(a-ib)x=eax(cosbx-isinbx), y1+y2=2eaxcosbx, , y1-y2=2ieaxsinbx, . 故eaxcosbx、y2=eaxsinbx也是方程解. 可以验证, y1=eaxcosbx、y2=eaxsinbx是方程的线性无关解. 因此方程的通解为 y=eax(C1cosbx+C2sinbx ). 求二阶常系数齐次线性微分方程y¢¢+py¢+qy=0的通解的步骤为: 第一步 写出微分方程的特征方程 r2+pr+q=0 第二步 求出特征方程的两个根r1、r2. 第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值