sklearn聚类模型评估代码_sklearn之模型评估指标总结归纳

本文介绍了sklearn库中用于模型评估的指标,包括分类模型的accuracy_score、classification_report、confusion_matrix、precision_score、recall_score、f1_score,以及回归模型的MAE、MSE、R^2。对于聚类模型,提到了一些常见的评估方法,如adjusted_rand_score和completeness_score。文章强调了选择合适评估指标的重要性,特别是在处理不平衡数据集时。
摘要由CSDN通过智能技术生成

机器学习模型评估

以下方法,sklearn中都在sklearn.metrics类下,务必记住哪些指标适合分类,那些适合回归,不能混着用

分类的模型大多是Classifier结尾,回归是Regression

分类模型

accuracy_score(准确率得分)是模型分类正确的数据除以样本总数 【模型的score方法算的也是准确率】

accuracy_score(y_test,y_pre)

# 或者 model.score(x_test,y_test),大多模型都是有score方法的

classification_report中的各项得分的avg/total 是每一分类占总数的比例加权算出来的

print(classification_report(y_test,y_log_pre))

precision recall f1-score support

0 0.87 0.94 0.90 105

1 0.91 0.79 0.85 73

avg / total 0.88 0.88 0.88 178

confusion_matrix(混淆矩阵),用来评估分类的准确性

有的分类问题,实际样本中1000个A,10个B,如果最后分类大多数B都被预测错误了,但依据其他评估方法,得分反而很高(因为A的数目相对太多导致的)

>>> from sklearn.metrics import confusion_matrix

>>> y_true = [2, 0, 2, 2, 0, 1]

>>> y_pred = [0, 0, 2, 2, 0, 2]

>>>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值