用户数据化运营是互联网运营工作必备工作之一,且产品的生存必须有用户。而会员价价值度是用来评估用户的价值情况,是区分会员价值的重要性模型和参考依据,也是衡量不同营销效果的关键指标之一,我们可以通过复购率、消费频率、最近一次购买时间、最近一次购买金额等方面分析会员价值度。
常用的价值度模型是RFM。RFM模型是根据会员最近一次购买时间R(Rencency)、购买频率F(Frequency)、购买金额M(Monetary)计算得出RFM的值,可以通过K-MEANS聚类或者的RFM价值模型对客户进行分类。
K-means聚类原理
K-means是一个聚类算法用来将n 个点分成 k 个集群。
k-means算法为基于距离的非层次聚类算法,采用距离作为相似性的评价指标,距离越近,则认为两个样本的相似性越大。python建模采用sk-learn 机器学习库,其K-means算法采用的是欧几里得距离。算法过程简单归纳一下,就不上详细的数学公式了:
step 1 选取K个对象作为初始的聚类中心,k需要事先指点,因此聚类结果具有一定的随机性
step 2 分别计算每个样本到聚类中心的距离,将样本分配到距离最近的聚类中。
step 3 在所有样本都分配到某个聚类后,重新计算K各聚类的中心
step 4 与前一次计算的K个聚类中心比较,如果聚类中心发生变化,就转到 step2,用新的聚类中心分类样本,loop。
step 5 当聚类中心不发生变化,或者达到最大迭代次数时,停止并输出聚类结果。
最后的结果是点和质心之间的均方差达到最小。
案例详解
导入数据,并设置索引列