kmeans及模型评估指标_基于K-MEANS聚类模型和RFM价值分类模型的订单交易用户价值分析...

本文介绍了基于K-MEANS聚类和RFM模型进行用户价值分析的方法。通过K-MEANS算法确定最佳K值为3,将用户分为三类:高价值、一般和低价值人群。RFM模型则通过对最近购买时间、购买频率和购买金额的分析,帮助评估用户价值并制定差异化营销策略。
摘要由CSDN通过智能技术生成

用户数据化运营是互联网运营工作必备工作之一,且产品的生存必须有用户。而会员价价值度是用来评估用户的价值情况,是区分会员价值的重要性模型和参考依据,也是衡量不同营销效果的关键指标之一,我们可以通过复购率、消费频率、最近一次购买时间、最近一次购买金额等方面分析会员价值度。

常用的价值度模型是RFM。RFM模型是根据会员最近一次购买时间R(Rencency)、购买频率F(Frequency)、购买金额M(Monetary)计算得出RFM的值,可以通过K-MEANS聚类或者的RFM价值模型对客户进行分类。

K-means聚类原理

K-means是一个聚类算法用来将n 个点分成 k 个集群。

k-means算法为基于距离的非层次聚类算法,采用距离作为相似性的评价指标,距离越近,则认为两个样本的相似性越大。python建模采用sk-learn 机器学习库,其K-means算法采用的是欧几里得距离。算法过程简单归纳一下,就不上详细的数学公式了:

step 1 选取K个对象作为初始的聚类中心,k需要事先指点,因此聚类结果具有一定的随机性

step 2 分别计算每个样本到聚类中心的距离,将样本分配到距离最近的聚类中。

step 3 在所有样本都分配到某个聚类后,重新计算K各聚类的中心

step 4 与前一次计算的K个聚类中心比较,如果聚类中心发生变化,就转到 step2,用新的聚类中心分类样本,loop。

step 5 当聚类中心不发生变化,或者达到最大迭代次数时,停止并输出聚类结果。

最后的结果是点和质心之间的均方差达到最小。

案例详解

导入数据,并设置索引列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值