pytorch 语义分割loss_vedaseg:基于pytorch的开源语义分割工具库,更多模型支持,更易拓展...

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~

作者:mileistone(媒智科技算法工程师)

来源:https://zhuanlan.zhihu.com/p/98561946

本文已由作者授权转载,未经允许,不得二次转载

今年九月份我们打了一个语义分割的比赛,比赛初期我们调研了一系列基于pytorch的语义分割训练框架,这些框架要么支持的模型少,要么实现得不够模块化、不易拓展。 于是我们决定写一个类似于mmdetection的语义分割训练框架,一来方便我们做语义分割的实验,二来可以锻炼自己的代码能力。 从十月中旬开始,我们断断续续地写到了十二月中旬,我们实现的语义分割框架 终于可以收工了。 我们使用vedaseg做了大量实验,感觉还挺好用,现在将其开源出来,希望给有相关需求的朋友一个新的选择。 Github链接: https://github.com/Media-Smart/vedaseg

Introduction 

vedaseg is an open source semantic segmentation toolbox based on PyTorch.

Features

  • Modular Design:
We decompose the semantic segmentation framework into different components. The flexible and extensible design make it easy to implement a customized semantic segmentation project by combining different modules like building Lego.
  • Support of several popular frameworks:
The toolbox supports several popular and semantic segmentation frameworks out of box,e.g.DeepLabv3+, DeepLabv3, UNet, PSPNet, FPN, etc.

Benchmark and model zoo

Note: All models are trained only on PASCAL VOC 2012 trainaug dataset and evaluated on PASCAL VOC 2012 val dataset.
b0aff589d650ba64a3d70a1868541972.png

更多说明可前往Github(https://github.com/Media-Smart/vedaseg)查看和尝试。

-End-

*延伸阅读
  • 汇总 | 深度学习中图像语义分割基准数据集详解

  • 干货分享|一文看懂实时语义分割

  • 一文概览主要语义分割网络:FCN,SegNet,U-Net...


CV细分方向交流群

添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群(已经添加小助手的好友直接私信),更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~

c1650ced3ab0be49da5344e2455742f3.png

△长按添加极市小助手

6f596276098bdf7179061f53abaf3980.png

△长按关注极市平台

觉得有用麻烦给个在看啦~  8b4e1977315b1a1828dbde5c8fbeb096.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值