java tire树_详解Java实现Tire单词查找树

Trie,又称单词查找树或键树,是一种树形结构。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。

它有3个基本性质:根节点不包含字符,除根节点外每一个节点都只包含一个字符。

从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。

每个节点的所有子节点包含的字符都不相同。

下面这个图就是Trie的表示,每一条边表示一个字符,如果结束,就用星号表示。在这个Trie结构里,我们有下面字符串,比如do, dork, dorm等,但是Trie里没有ba, 也没有sen,因为在a, 和n结尾,没有结束符号(星号)。

b40792ea119220e96f50c6f4a0b8eafc.gif

有了这样一种数据结构,我们可以用它来保存一个字典,要查询改字典里是否有相应的词,是否非常的方便呢?我们也可以做智能提示,我们把用户已经搜索的词存在Trie里,每当用户输入一个词的时候,我们可以自动提示,比如当用户输入 ba, 我们会自动提示 bat 和 baii.

现在来讨论Trie的实现。

首先,我们定义一个Abstract Trie,Trie 里存放的是一个Node。这个类里有两个操作,一个是插入,另一个是查询。具体实现放在后面。

Trie的实现

Node类:package com.xttblog;

import java.util.LinkedList;

public class Node {

char content; //装node中的内容

boolean isEnd; //是否是单词的结尾

int count;  //这个单词的这个字母下面分支的个数

LinkedList childList; //子list

/**

* 构造函数

* @param c 单词的字母

*/

public Node(char c){

childList = new LinkedList();

isEnd = false;

content = c;

count = 0;

}

/**

* 遍历一下这个node中LinkedList中是否有这个字母,有就意味着可以继续查找下去,没有就没有。

* @param c 单词的字母

* @return 如果有的话就返回下一个node,没有的话就返回null

*/

public Node subNode(char c){

if(childList != null){

for(Node eachChild : childList){

if(eachChild.content == c){

return eachChild;

}

}

}

return null;

}

}

具体实现:package com.xttblog;

public class Main {

private Node root; //根

/**

* 构造函数,生成根

*/

public Main(){

root = new Node(' ');

}

/**

* 插入函数,先判断是否有这个单词了(通过每个单词字母来判断),如果没有,挨着顺序判断是否有这个字母了,

*如果有这个字幕,继续判断下一个,当没有这个字母的时候,对这个字母new一个node对象,放入到上一个字母的

*LinkedList里面

* @param word 要插入的单词

*/

public void insert(String word){

//如果找到就返回

if(search(word) == true) return;

Node current = root;

for(int i = 0; i 

Node child = current.subNode(word.charAt(i));

if(child != null){

current = child;

} else {

current.childList.add(new Node(word.charAt(i)));

current = current.subNode(word.charAt(i));

}

//单词下面分支数++

current.count++;

}

//在单词最后字母那里结束了

current.isEnd = true;

}

/**

* 查找函数,判断是否已经有隔着单词了

* @param word 要判断的单词

* @return 有这个单词返回true,没有返回false

*/

public boolean search(String word){

Node current = root;

for(int i = 0; i 

if(current.subNode(word.charAt(i)) == null)

return false;

else

current = current.subNode(word.charAt(i));

}

//判断这个单词的这个字母是否在字典里面结束了

if (current.isEnd == true) return true;

else return false;

}

/**

* 删除函数,先判断是否存在这个单词,不存在就跳出,存在就删除掉,每个单词的count都要减1

* @param word 要删除的单词

*/

public void deleteWord(String word){

if(search(word) == false) return;

Node current = root;

for(char c : word.toCharArray()) {

Node child = current.subNode(c);

if(child.count == 1) {

current.childList.remove(child);

return;

} else {

child.count--;

current = child;

}

}

current.isEnd = false;

}

public static void main(String[] args) {

Main trie = new Main();

trie.insert("ball");

trie.insert("balls");

trie.insert("sense");

System.out.println(trie.search("balls"));

System.out.println(trie.search("ba"));

trie.deleteWord("balls");

System.out.println(trie.search("balls"));

System.out.println(trie.search("ball"));

}

}

时间复杂度分析:

对于insert, 如果被插入的String长度是 k, 每对一个字符进行查询,我们最多在child linkedlist里面查询26次(最多26个字母),所以,复杂度为O(26*k) = O(k). 对于 search, 复杂度是一样的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值