import numpy as np
import cv2
cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml")
smile_cascade = cv2.CascadeClassifier("data/haarcascade_smile.xml")
# img = cv2.imread("img/test1.jpg")
while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
roi_gray = gray[y : y + h, x : x + w]
roi_color = img[y : y + h, x : x + w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex, ey, ew, eh)

该博客介绍了如何利用OpenCV库在Python中实现实时的人脸检测,并结合双边滤波器进行图片美白磨皮。通过检测到的面部区域应用滤波器,实现了对脸部的平滑处理,但当脸部离开检测范围时,效果会消失。
最低0.47元/天 解锁文章

1524

被折叠的 条评论
为什么被折叠?



