瑞利分布概率密度函数推导_玻色-爱因斯坦分布(Boson-Einstein Distribution)、光子气体、黑体辐射...

本文探讨了黑体辐射在近代物理学中的重要地位,从统计物理的角度深入研究了光子气体的分布,特别是玻色-爱因斯坦分布。通过对玻色系统微观态的分析,推导出玻色-爱因斯坦分布公式,并将其应用于黑体辐射问题,得出符合普朗克公式的结论。文章还强调了在推导过程中拉格朗日乘子法的应用。
摘要由CSDN通过智能技术生成

a071907314a813c5937d033d6a261be6.png

在近代物理学发展的过程中,黑体辐射(Blackbody radiation)起到了举足轻重的作用。可以说,对于黑体辐射的研究和现象解释,直接导致了近代物理学史无前例的一场革命——开启了量子物理的新纪元。最近我个人在研究关于黑体辐射的有关话题,发现黑体辐射这一模块跟许多物理学分支都有所关联——几乎把四大力学的各种知识都运用上了(至于量子力学则只是一个开端)。对于黑体辐射的终极公式——普朗克公式,也可以通过许多角度来进行推导,但是最终我们都绕不开统计物理的相关内容。我本人也是对统计物理这一领域比较感兴趣,正好能够借此机会整理一下相关的知识。

首先,我们要明白黑体辐射本质上是一种热辐射,就是由于物理具有温度而辐射电磁波的现象。当然这个定义是基于波的观点来定义的。根据波粒二象性,既然能够运用波的观点来解释热辐射现象,也一定可以利用与之等效的粒子观点来进行解释。而与热辐射对应的“粒子”实际上就是我们平常说的“光子”,也就是“光量子”。这时候,我们就可以说热辐射就是指物体以往外发射光子的形式放出能量。我们要通过粒子的角度研究黑体辐射(源于量子化假设),首先就要研究光子在不同能级上的分布(也即“光子气体”)。·

我们首先注意到光子自旋量子数为1,说明光子是一种玻色子(自旋量子数是整数的粒子)。常见的粒子分布有3种——一是玻尔兹曼分布(适用于满足经典极限的粒子);二是玻色——爱因斯坦分布(适用于玻色子);三是费米——狄拉克分布(适用于费米子)。为了简便,我们首先来研究全同(具有完全相同的内禀属性,例如质量、电荷、自旋等)、近独立(粒子之间相互作用很弱,因而满足能量可加性)的例子。对于更普遍的情形,我将会用系综理论来再次进行更加严格的推导。

研究粒子的分布,对于可分辨的粒子而言,关键是要确定每一个粒子的量子态(一般来讲,一个系统有多个能级,一个能级又有多个量子态);而对于不可分辨的粒子而言,则主要是确定每个量子态上的粒子数。由经典粒子组成的系统称为玻尔兹曼系统,它是由可分辨的全同近独立粒子构成,且处于每个量子态上的粒子数不受限制(玻尔兹曼最早的假设,建立时间远早于量子力学)。由玻色子组成的系统叫做玻色系统,认为粒子是不可分辨的,每一个量子态容纳的粒子不受限制。由费米子组成的系统叫费米系统,费米分布中粒子同样是不可分辨的,但是根据泡利不相容原理,在含有多个全同近独立粒子的费米子系统中,一个个体量子态最多只能容纳一个费米子。因此,对于三种分布而言,计算微观态可能数目的公式也是不同的。接下来我们将建立三种分布的微观态计算公式。

首先假设一个系统,由大量全同近独立粒子组成,具有确定的粒子数

,能量
和体积
瑞利分布是一种连续概率分布,它通常用于描述随机变量的幅值。它的概率密度函数为: $$ f(x;\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} $$ 其中,$x$ 是随机变量的取值,$\sigma$ 是瑞利分布的参数,通常被称为“尺度参数”,它决定了分布的形状和尺度。 现在我们来推导一下瑞利分布概率密度函数。 假设有一个随机变量 $X$,它服从瑞利分布,即 $X \sim \operatorname{Rayleigh}(\sigma)$。我们要求的是 $X$ 取某个值的概率密度。 由于 $X$ 是一个连续型随机变量,我们不能直接计算它取某个值的概率,而只能计算它在某个区间内取值的概率。因此,我们需要先求出它在区间 $(x, x + \Delta x)$ 内取值的概率密度。 假设 $f(x)$ 是 $X$ 的概率密度函数,那么 $X$ 在 $(x, x + \Delta x)$ 内取值的概率为: $$ P(x < X < x + \Delta x) \approx f(x) \Delta x $$ 这个式子的意思是,$X$ 在 $(x, x + \Delta x)$ 内取值的概率约等于 $f(x)$ 乘以区间的长度 $\Delta x$。我们用 $\approx$ 表示这是一个近似值,因为我们假设 $f(x)$ 在区间 $(x, x + \Delta x)$ 内是一个常数,但实际上它是一个变化的函数。 现在,我们要求的是 $X$ 取某个值 $x$ 的概率密度,即 $P(X = x)$。由于 $X$ 是一个连续型随机变量,所以 $P(X = x) = 0$,也就是说 $X$ 取任何一个确定的值的概率都是 $0$。 但是,我们可以求出 $X$ 在某个范围内取值的概率密度。例如,$X$ 在 $(x, x + \Delta x)$ 内取值的概率密度为 $f(x)$。当 $\Delta x$ 趋近于 $0$ 时,这个概率密度就会趋近于 $0$。因此,我们可以得到: $$ P(x \leq X \leq x + \Delta x) = \int_x^{x+\Delta x} f(t) dt \approx f(x) \Delta x $$ 这个式子的意思是,$X$ 在 $(x, x + \Delta x)$ 内取值的概率密度约等于 $f(x)$ 乘以区间的长度 $\Delta x$。 现在,我们可以对 $f(x) \Delta x$ 进行一些变形,得到: $$ f(x) = \lim_{\Delta x \to 0} \frac{P(x \leq X \leq x + \Delta x)}{\Delta x} $$ 这个式子的意思是,$f(x)$ 可以看作是 $X$ 在 $(x, x + \Delta x)$ 内取值的概率密度除以区间的长度 $\Delta x$,在 $\Delta x$ 趋近于 $0$ 的极限下求得。 现在,我们来计算这个极限。由于 $X$ 的概率密度函数为 $f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$,所以: $$ \begin{aligned} & \lim_{\Delta x \to 0} \frac{P(x \leq X \leq x + \Delta x)}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} \frac{t}{\sigma^2} e^{-\frac{t^2}{2\sigma^2}} dt}{\Delta x} \\ = & \lim_{\Delta x \to 0} \frac{\frac{(x+\Delta x)^2}{2\sigma^2} e^{-\frac{(x+\Delta x)^2}{2\sigma^2}} - \frac{x^2}{2\sigma^2} e^{-\frac{x^2}{2\sigma^2}}}{\Delta x} \\ = & \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \end{aligned} $$ 因此,瑞利分布概率密度函数为: $$ f(x;\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} $$ 这就是瑞利分布概率密度函数推导过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值