去哪儿网爬虫项目实战:Python源码教程与分析

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本压缩文件包含Python网络爬虫项目的完整源码,适用于学习和研究去哪儿网的数据抓取技术。用户可以通过阅读配套的入门教程和分析源代码文件夹来掌握爬虫的基本原理和高级技巧。教程涵盖了Python编程、HTTP请求、HTML解析以及数据处理和存储等重要概念和实践技巧。源代码文件夹展示了爬虫脚本、配置、解析和存储模块的具体实现,帮助学习者深入理解构建网络爬虫系统的全过程。 QunarSpider-master-python.rar

1. Python网络爬虫基础教程

简介

网络爬虫是自动获取网络资源的程序或脚本,是数据采集的重要手段。在这一章中,我们将探索Python网络爬虫的基本概念和技术,为后续章节中更高级的数据抓取和处理打下基础。

Python网络爬虫的基本组成

一个基础的Python网络爬虫通常包含以下几个组成部分:

  • 请求模块:负责发起网络请求,如 requests 库。
  • 响应处理:解析服务器返回的数据,如 BeautifulSoup lxml 库。
  • 数据提取:从解析后的数据中提取出所需信息。
  • 存储机制:将提取出的数据保存到文件或数据库中。

爬虫的运行原理

网络爬虫的工作流程大致可以分为以下几个步骤:

  1. 使用请求模块向目标网页发送HTTP请求。
  2. 服务器响应请求后返回HTML页面或其他格式的数据。
  3. 使用解析库提取页面中的数据。
  4. 将提取的数据进行清洗和格式化。
  5. 将清洗后的数据存储到本地文件或数据库中。

下面是一个简单的Python网络爬虫示例代码:

import requests
from bs4 import BeautifulSoup

# 发起请求
response = requests.get('***')

# 解析响应内容
soup = BeautifulSoup(response.text, 'html.parser')

# 提取数据
titles = soup.find_all('h1')
for title in titles:
    print(title.text)

在这个例子中,我们首先使用 requests.get 方法向指定的URL发起GET请求。然后,利用 BeautifulSoup 解析返回的HTML内容。之后,我们通过 find_all 方法找到所有的 <h1> 标签并打印出它们的文本内容。

通过本章内容,我们将构建网络爬虫的初步能力,为深入学习和掌握复杂的爬虫技术打下坚实的基础。接下来的章节将介绍如何针对具体网站进行数据抓取,并且涉及环境搭建、脚本编写、配置管理等更为高级的话题。

2. 去哪儿网数据抓取实战

在当今信息爆炸的时代,通过网络爬虫技术自动化抓取网站数据变得尤为重要。去哪儿网作为国内领先的一站式旅行服务平台,吸引了大量用户关注。通过对其数据的抓取,不仅可以分析旅游市场的动态,还能洞察消费者行为和偏好。本章将通过实战演练,展示如何使用Python网络爬虫技术从去哪儿网抓取数据。

2.1 项目规划与目标设定

2.1.1 明确抓取目标和数据需求

在开始一个爬虫项目前,首先需要明确爬取目标和数据需求。在本实战中,我们将聚焦于抓取去哪儿网的旅游产品信息,包括但不限于:目的地、旅游天数、价格、用户评分和评论等。这些信息对于分析市场趋势和用户行为具有极高的价值。

2.1.2 设定抓取范围和时间计划

根据项目需求,我们将限定抓取范围在热门旅游城市,并设定抓取时间为旅游旺季前后各一个月。时间计划方面,我们将在项目开始阶段确定,保证在限定时间内完成数据的抓取、处理和分析工作。

2.2 工具选择与环境搭建

2.2.1 Python环境的配置

Python是网络爬虫开发中最为常用的语言之一,因其简洁和强大的库支持。在本项目中,我们选择Python 3.x版本,并通过虚拟环境管理工具 venv conda 进行隔离配置,确保环境的纯净性。

2.2.2 爬虫框架和第三方库的选择

我们将使用Scrapy框架作为主要的爬虫工具,因为它提供了从请求发送到数据存储的全栈解决方案。在第三方库选择上,除了Scrapy自带的组件,我们还需要安装如 lxml requests pandas scrapy-splash 等库来增强爬虫的功能。

为确保项目的顺利进行,下面展示的是环境配置的具体步骤:

Python环境配置:
  1. 安装Python 3.x版本,建议使用最新稳定版。
  2. 安装 virtualenv (或 conda )。
  3. 创建一个新的虚拟环境: bash virtualenv myenv

  4. 激活虚拟环境:

bash source myenv/bin/activate # 在Unix或MacOS上 myenv\Scripts\activate # 在Windows上

  1. 安装Scrapy框架及其他第三方库:

bash pip install scrapy pip install lxml requests pandas scrapy-splash

第三方库安装:
  1. lxml - 一个高效且灵活的XML和HTML解析库。
  2. requests - 用于发送HTTP请求。
  3. pandas - 数据分析和处理库。
  4. scrapy-splash - 用于渲染JavaScript生成的页面。
Mermaid流程图 - Python环境搭建流程:
graph LR
A[开始] --> B[安装Python]
B --> C[安装virtualenv或conda]
C --> D[创建虚拟环境]
D --> E[激活虚拟环境]
E --> F[安装Scrapy及相关库]
F --> G[Python环境配置完成]

以上步骤确保了我们的开发环境干净且有条不紊,为后续的开发打下了坚实的基础。

3. 源码结构与解析模块

3.1 源码目录结构分析

3.1.1 主程序的构成与功能

在爬虫项目中,主程序是整个流程的指挥中心。它负责初始化爬虫环境,加载配置文件,以及启动请求调度器。以下是主程序的一般构成及其功能描述:

  • 初始化模块 :负责配置环境,包括设置日志系统、异常处理机制,以及加载用户设置的配置文件。
  • 调度器模块 :负责请求的调度管理,如分配URL给不同的爬虫工作线程。
  • 下载器模块 :负责发送HTTP请求,并处理返回的响应。
  • 解析器模块 :对下载的内容进行解析,提取出有价值的数据。
  • 存储器模块 :将解析后的数据存储到指定的数据库或文件中。

下面是一个简单的主程序代码示例:

import logging
from crawler.spiders import MySpider
from crawler.pipeline import MyPipeline
from crawler.settings import DEFAULT_SETTINGS

def main():
    logging.basicConfig(format='%(asctime)s [%(levelname)8.8s] %(message)s', level=***)
    settings = DEFAULT_SETTINGS
    # 可以通过命令行参数覆盖默认设置
    # parser = argparse.ArgumentParser()
    # parser.add_argument('--proxy', default=None)
    # args = parser.parse_args()
    # settings['HTTP_PROXY'] = args.proxy

    # 启动爬虫
    spider = MySpider()
    spider.setup(settings)
    spider.start_pipeline(MyPipeline())
    spider.crawl()

if __name__ == "__main__":
    main()

在这个代码示例中,主程序首先设置了日志系统,然后加载了默认配置。随后,创建了爬虫实例,配置了管道处理,并开始爬取过程。

3.1.2 各模块职责与交互流程

在爬虫项目中,各模块之间有明确的职责划分与交互流程:

  1. 主程序 :负责整个爬虫流程的启动,管理和协调各模块之间的数据传递。
  2. 配置模块 :负责提供配置数据,比如请求头、代理服务器、爬虫策略等。
  3. 下载器模块 :负责向目标网站发送请求,并获取响应内容。
  4. 解析器模块 :负责从响应内容中提取数据,同时解析网页结构。
  5. 管道模块 :负责数据的后处理,例如数据的清洗、去重,以及数据的持久化存储。

下面通过一个mermaid流程图来展示各模块之间的交互:

graph LR
    A[主程序] -->|配置数据| B[配置模块]
    A -->|请求任务| C[下载器模块]
    C -->|响应内容| D[解析器模块]
    D -->|提取数据| E[管道模块]
    E -->|处理后的数据| F[存储系统]

从图中可以看出,主程序是爬虫项目的大脑,它负责控制数据流向,确保每个模块能有效地完成自己的任务。

3.2 解析模块的设计与实现

3.2.1 解析模块的设计思路

解析模块是爬虫项目中至关重要的部分。它的主要任务是从下载的网页内容中提取所需的数据。设计一个好的解析模块需要考虑以下几点:

  • 可读性 :代码应该足够清晰,容易理解,便于维护。
  • 扩展性 :设计时应考虑到未来可能会扩展爬取规则或增加新的数据提取逻辑。
  • 性能 :解析操作可能会消耗大量的CPU资源,因此代码应该尽可能优化,提高执行效率。
  • 容错性 :网络响应可能不稳定,解析时应处理好异常情况。

3.2.2 关键代码的解析与执行流程

以解析一个网页中的所有链接为例,我们可以使用BeautifulSoup库来完成这个任务。下面展示了一个使用BeautifulSoup提取网页链接的示例代码,并附有详细注释:

from bs4 import BeautifulSoup
import requests

def parse_url(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    # 查找所有的<a>标签
    links = soup.find_all('a')
    # 遍历所有找到的<a>标签,并提取href属性
    urls = [link.get('href') for link in links]
    return urls

def main():
    url = '***'
    try:
        response = requests.get(url)
        response.raise_for_status()  # 确保请求成功
        urls = parse_url(response.text)
        print(urls)
    except requests.HTTPError as http_err:
        print(f'HTTP error occurred: {http_err}')
    except Exception as err:
        print(f'An error occurred: {err}')

if __name__ == "__main__":
    main()

在这段代码中, parse_url 函数接收网页的HTML内容,并利用BeautifulSoup库的 find_all 方法查找所有的 <a> 标签。然后通过列表推导式提取出标签内的 href 属性值,即链接地址。

执行流程如下:

  1. 发送HTTP GET请求到目标URL。
  2. 获取响应内容,并检查HTTP状态码确认请求成功。
  3. 调用 parse_url 函数解析响应内容中的HTML,提取出所有的链接地址。
  4. 将提取出的链接地址输出到控制台。

这段代码展示了如何通过解析模块来提取网页中的数据,并对可能发生的异常进行了处理,保证了代码的健壮性。

4. 爬虫脚本和配置文件

4.1 爬虫脚本功能解析

4.1.1 启动流程与参数解析

爬虫脚本的启动流程是整个爬虫运行的开端。一般来说,启动流程包含以下步骤:

  1. 初始化爬虫环境和全局变量。
  2. 读取配置文件,加载配置项。
  3. 创建请求调度器。
  4. 设置日志系统,记录运行日志。
  5. 启动请求发送循环。

在启动脚本时,我们可以指定多个参数,例如配置文件的路径、日志级别、是否启动代理等。参数通常通过命令行来指定,例如:

python crawler.py --config path/to/config.json --log-level debug --proxy true

这里, --config 参数指定了配置文件的路径, --log-level 设置日志级别为 debug, --proxy 参数启用代理。

import argparse
import logging

# 创建解析器
parser = argparse.ArgumentParser(description="爬虫启动脚本")
parser.add_argument("--config", default="config.json", help="配置文件路径")
parser.add_argument("--log-level", default="info", choices=["debug", "info", "warning", "error"], help="日志级别")
parser.add_argument("--proxy", action="store_true", help="是否启用代理")
args = parser.parse_args()

# 参数使用示例
config_path = args.config
log_level = args.log_level
use_proxy = args.proxy

# 根据参数设置日志级别
logging.basicConfig(level=getattr(logging, log_level.upper(), ***))

在上面的代码示例中,我们首先导入了 argparse 模块用于命令行参数解析,然后定义了三个参数,并在最后通过 parse_args() 方法来获取这些参数。

4.1.2 请求调度与任务管理

请求调度是爬虫的核心部分之一,负责控制请求的发送顺序和频率。任务管理则涉及将待抓取的URL和已抓取的URL进行管理。良好的请求调度和任务管理可以提高爬虫的抓取效率和稳定性。

请求调度器一般需要实现以下几个核心功能:

  • 添加新的请求到调度队列中。
  • 控制请求的发送频率,避免过快的请求速度导致被封IP或触发反爬虫机制。
  • 记录每个请求的状态,如成功、失败、重试次数等。
  • 提供重试机制,对于请求失败的URL进行重试。

任务管理器则需要管理以下内容:

  • 待抓取的URL队列。
  • 抓取过的URL集合,防止重复抓取。
  • 一些规则或算法,用来决定下一个要抓取的URL。

在实现上,任务管理器和请求调度器可以是同一个组件。这里以一个简单的代码实现来说明如何组织这部分逻辑:

from queue import Queue

# 请求类
class Request:
    def __init__(self, url, method="GET", headers=None, payload=None):
        self.url = url
        self.method = method
        self.headers = headers or {}
        self.payload = payload or {}

    def send(self):
        # 发送HTTP请求的逻辑
        pass

# 请求调度器类
class Scheduler:
    def __init__(self):
        self.queue = Queue()

    def add_request(self, request):
        self.queue.put(request)

    def get_request(self):
        return self.queue.get()

# 任务管理器
class TaskManager:
    def __init__(self):
        self.visited = set()

    def add_task(self, url):
        if url not in self.visited:
            self.visited.add(url)
            # 创建请求对象并加入调度队列
            request = Request(url)
            scheduler.add_request(request)
    def is_task_exists(self, url):
        return url in self.visited

在以上代码中,我们定义了请求类 Request ,请求调度器类 Scheduler 和任务管理器类 TaskManager 。请求调度器维护一个队列 Queue ,用于管理请求的发送顺序。任务管理器维护一个集合 visited 来记录已经抓取过的URL,避免重复抓取。

4.2 配置文件的作用与设置

4.2.1 配置文件的重要性

配置文件对于爬虫来说是至关重要的,它允许我们通过外部文件来管理爬虫运行时的各项设置,而不是直接修改代码。这样做的好处包括:

  • 方便管理与维护:我们可以根据不同的抓取任务需求,快速切换配置文件而无需更改代码。
  • 提高安全性:敏感信息(如代理服务器信息、登录凭据等)不应直接包含在源代码中,应存储在配置文件中。
  • 灵活性与可扩展性:根据不同的抓取需求,可以定制不同的配置项,增加爬虫的可配置性。

4.2.2 配置项详解与修改指南

一个典型的配置文件可能包含以下配置项:

  • LOGGING : 日志配置,设置日志级别、输出格式等。
  • PROXY : 代理服务器配置,设置IP地址和端口号等。
  • RETRY : 重试机制配置,设置重试次数和重试间隔等。
  • USER_AGENT : 指定爬虫使用的User-Agent。
  • HEADERS : 自定义请求头,用于模拟浏览器或绕过简单的反爬虫机制。
  • TARGETS : 抓取目标配置,设置抓取的起始URL或特定页面的参数等。

以一个JSON格式的配置文件为例:

{
  "LOGGING": {
    "level": "info",
    "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
  },
  "PROXY": {
    "enable": false,
    "ip": "***.*.*.*",
    "port": 8080
  },
  "RETRY": {
    "count": 3,
    "interval": 5
  },
  "USER_AGENT": "Mozilla/5.0 (compatible; MyCrawler/1.0)",
  "HEADERS": {
    "Accept-Language": "en-US,en;q=0.5"
  },
  "TARGETS": {
    "start_urls": ["***"]
  }
}

在代码中,我们需要解析这些配置项,然后根据配置项设置爬虫的行为:

import json

# 加载配置文件
with open(config_path, "r") as ***
    ***

* 根据配置文件内容设置爬虫
# 日志配置
logging.basicConfig(level=config['LOGGING']['level'],
                    format=config['LOGGING']['format'])

# 代理配置
proxy = config['PROXY']
# 启用代理逻辑(这里省略具体代理配置代码)

# 请求头配置
headers = config['HEADERS']

# 用户代理
user_agent = config['USER_AGENT']

# 抓取目标配置
targets = config['TARGETS']['start_urls']

以上是配置文件的解析与使用示例,每个配置项都通过配置文件中的内容进行设置。这样,我们在需要调整爬虫行为时,只需要修改配置文件即可,无需改动任何代码,增加了爬虫的灵活性与可维护性。

5. HTTP请求与HTML解析技术

5.1 HTTP请求的构建与发送

在进行网络爬虫开发时,构建并发送HTTP请求是获取目标网站数据的前提。网络爬虫与网站的交互实际上是通过HTTP协议完成的,理解HTTP请求的结构是至关重要的。

5.1.1 请求头的设计与安全策略

构建HTTP请求时,通常需要设置请求头(Request Headers)。请求头中包含了很多重要信息,例如:

  • User-Agent:标识发起请求的浏览器类型,有些网站会根据User-Agent来判断请求是否来自爬虫程序。
  • Accept:指定客户端可以处理的内容类型。
  • Accept-Language:指定客户端偏好接受的自然语言。
  • Accept-Encoding:指定客户端支持的内容编码类型。
  • Host:指定服务器的域名和端口号。
  • Connection:管理客户端与服务器之间的网络连接。

为了防止网站拒绝爬虫访问,我们通常会模拟浏览器的行为来设置这些头部信息。

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
response = requests.get(url, headers=headers)

在上述代码中,我们使用requests库发送了一个GET请求,其中headers字典用于存储请求头信息。这可以帮助我们伪装成一个正常的浏览器访问。

5.1.2 发送请求与响应处理

发送HTTP请求后,会得到服务器返回的响应(Response)。通过分析响应内容,我们可以获取页面数据,提取需要的信息。

import requests

response = requests.get('***', headers=headers)
if response.status_code == 200:
    print("请求成功,响应状态码为:", response.status_code)
    print("响应内容为:", response.text)
else:
    print("请求失败,状态码为:", response.status_code)

在这段代码中,我们首先发送GET请求到目标网址,并通过检查 response.status_code 来确认请求是否成功。成功时,我们打印出响应内容;失败时,则打印出错误状态码。

安全策略

除了基础的请求和响应处理外,还需要考虑网络爬虫的安全性和合规性:

  • 遵守robots.txt:在发起请求前,应检查目标网站的robots.txt文件,以确保爬虫遵守网站的爬取规则。
  • 设置合适的请求间隔:避免过快的请求频率,以免给目标服务器造成不必要的负担,甚至被封禁。
  • 使用代理和VPN:对于高频率或大规模的爬取任务,可以使用代理和VPN来隐藏爬虫的真实IP地址,提高爬取的隐蔽性。

5.2 HTML内容的解析技巧

通过发送HTTP请求获取HTML内容后,接下来需要对HTML进行解析,提取出有用的数据。在Python中,BeautifulSoup是一个非常流行的HTML解析库。

5.2.1 使用BeautifulSoup解析HTML

首先,我们需要安装并导入BeautifulSoup库:

pip install beautifulsoup4
from bs4 import BeautifulSoup

soup = BeautifulSoup(response.content, 'html.parser')

在这里, response.content 是从服务器获取的HTML文档内容,'html.parser' 是解析器的类型。

5.2.2 解析策略与数据提取方法

在使用BeautifulSoup进行解析时,可以按照以下步骤进行:

  • 查找标签:使用如 find() find_all() 等方法来查找特定的HTML标签。
  • 获取属性:通过标签对象,可以获取标签的属性值。
  • 提取文本:可以提取标签内的文本内容。
# 查找所有段落<p>标签
paragraphs = soup.find_all('p')

# 获取第一个<p>标签的文本内容
first_paragraph_text = paragraphs[0].text

# 获取所有的<a>标签,并打印它们的href属性
for link in soup.find_all('a'):
    print(link.get('href'))

通过这些方法,我们可以对HTML内容进行精确的提取和分析。为了提高解析效率,还需要掌握一些高级技巧,例如使用CSS选择器,以及如何处理JavaScript渲染的页面内容。

在处理复杂的网页时,可能需要更深入地理解网页的DOM结构,利用BeautifulSoup提供的方法和属性进行更精细化的操作。而在面对JavaScript渲染的内容时,则可能需要借助如Selenium这样的自动化测试工具,或者使用服务器端渲染技术。

通过上述的技术和策略,可以构建出高效且健壮的网络爬虫,进行有效的数据抓取和分析。

6. 数据处理和存储技巧

6.1 数据清洗与格式化

6.1.1 清洗策略和正则表达式应用

在实际的网络爬虫项目中,所抓取的数据往往包含许多无用的信息,例如广告、脚本、多余空格、特殊符号等。为了提高数据的质量,需要进行数据清洗。

数据清洗的关键策略之一就是利用正则表达式来识别和处理非结构化的文本数据。正则表达式(Regular Expression,简称Regex)是一种文本模式,包括普通字符(例如,每个字母和数字)和特殊字符(称为"元字符")。它们提供了一种灵活而强大的方式来识别文本中的字符串模式。

例如,如果你正在处理HTML文本,并希望提取所有的链接地址,你可以使用以下正则表达式:

import re

html = """<a href="***">Example</a>"""
pattern = r'href="(http[s]?://[^\s"]*)"'
links = re.findall(pattern, html)

print(links)  # 输出:['***']

在这个例子中, re.findall 函数用于查找所有匹配的链接。

6.1.2 数据的类型转换与结构化

清洗后的数据经常需要转换类型,例如将字符串转换为整型或浮点型,或者根据需要转换日期时间格式。Python提供了丰富的内置函数和模块来帮助我们完成这些任务。

同时,数据的结构化也是数据清洗的一个重要环节。结构化数据意味着数据具有一定的格式和结构,如列表、字典或数据库表等,这样的数据更容易存储和处理。例如,使用字典存储结构化数据:

data = [
    {'name': 'Alice', 'age': 25, 'job': 'Engineer'},
    {'name': 'Bob', 'age': 30, 'job': 'Analyst'},
]

# 提取工作信息创建新列表
jobs = [person['job'] for person in data]

print(jobs)  # 输出:['Engineer', 'Analyst']

在上面的代码中,我们从列表 data 中提取了每个字典中键为'job'的值,并创建了一个新的列表 jobs

6.2 数据存储方案选择与实践

6.2.1 选择合适的存储方案

选择正确的数据存储方案对于数据爬取的效率和后期处理至关重要。常见的存储方案包括文本文件、数据库以及NoSQL存储系统。

  • 文本文件适合存储结构化或半结构化的数据,如CSV、JSON格式等。它们易于读写,且可以使用标准的库如 csv json 模块直接操作。
  • 关系型数据库如MySQL、PostgreSQL提供事务处理、并发控制和复杂的查询功能,适合存储复杂关系的数据。
  • NoSQL数据库如MongoDB、Redis提供了灵活性和可扩展性,适合存储大量的非关系型数据。

6.2.2 实际存储操作与优化技巧

存储操作通常包括数据的插入、查询、更新和删除。以关系型数据库MySQL为例,基本的数据插入操作可以使用 cursor.execute 来实现:

import mysql.connector

# 连接到数据库
conn = mysql.connector.connect(user='user', password='password', host='***.*.*.*', database='testdb')

# 创建cursor对象
cursor = conn.cursor()

# 插入数据的SQL语句
sql = "INSERT INTO users (name, age) VALUES (%s, %s)"
val = ("Alice", 25)

cursor.execute(sql, val)

# 提交事务
***mit()

# 关闭连接
cursor.close()
conn.close()

在进行存储操作时,我们还需要考虑性能优化。例如:

  • 对于频繁查询的字段建立索引,以提高查询效率。
  • 使用批处理插入数据,以减少单条插入造成的I/O开销。
  • 选择合适的事务隔离级别,来防止数据不一致和提高并发性能。

通过这些优化策略,我们可以大幅度提升数据存储和读取的效率,为数据的后续分析提供强大支持。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本压缩文件包含Python网络爬虫项目的完整源码,适用于学习和研究去哪儿网的数据抓取技术。用户可以通过阅读配套的入门教程和分析源代码文件夹来掌握爬虫的基本原理和高级技巧。教程涵盖了Python编程、HTTP请求、HTML解析以及数据处理和存储等重要概念和实践技巧。源代码文件夹展示了爬虫脚本、配置、解析和存储模块的具体实现,帮助学习者深入理解构建网络爬虫系统的全过程。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值