matlab 滑动平均_fMRI滑动时间窗的一点总结

本文介绍了fMRI的动态研究方法,重点探讨了滑动时间窗技术。通过将时间维度分割成窗口进行独立计算,如ReHo和FC,以捕捉大脑功能的动态变化。窗口长度和步长的选择对结果稳定性至关重要,同时讨论了动态分析中的脑功能度量和状态分析指标。动态BC工具包dynamicBC为研究提供了便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是新公众号的第一篇推文, 总结一下昨天电子科技大学廖伟教授讲座关于fMRI的动态研究方法, 并附上一下自己的见解.

1.导言

功能磁共振成像(fMRI)是对大脑(这里讨论的对象为大脑)重复测量的一个过程, 受试者躺在扫描仪上扫描若干分钟, 扫描仪每隔2s对脑功能测量一次. 因此, fMRI数据可以理解为一种4维数据, 即大脑的3维空间加上时间维度. 空间的3维在数学处理时可以将其拉直维一维向量, 而对于时间维度的处理, 过去的研究通常将其当作一个整体处理, 例如在计算功能链接(functional connectivity)时将整个时间长度作为一个整体进行Pearson相关系数的计算. 这种研究分析方法可以称为静态(static) 的方法.

然而, 大脑功能在扫描仪的若干分钟并非是静止不变的,  而是动态变化的.

Rs-FC is not static and that RSNs can exhibit nonstationary, spontaneous relationships irrespective of conscious, cognitive processing.

为了捕获这种大脑功能的动态变化, 在2010年后, 研究人员们提出了一系列关于fMRI动态(dynamic)研究的框架. 常见的有滑动时间窗(sliding time window).常用方法大致方法如下.

sliding time window correlation (Majeed et al.,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值