gabor 变换matlab,Gabor变换到底是什么鬼?

本文介绍了傅里叶变换在图像处理中的应用及其局限性,引出Gabor变换作为解决傅里叶变换不足的方案。Gabor变换结合了时间和频率的局部化分析,具有在视觉信息理解和图像处理中的优势,特别是在边缘检测和纹理分析中的应用。文章还探讨了二维Gabor滤波器的定义、特性,并提供了MATLAB代码示例。
摘要由CSDN通过智能技术生成

05d2dd8691a19275cce0f8dc8afa028b.gif

欲讲gabor,必须先看下傅里叶变换有什么缺点!

1.傅里叶变换

1) 简介

数字图像处理的方法主要分成两大部分:空域分析法和频域分析法。空域分析法就是对图像矩阵进行处理;频域分析法是通过图像变换将图像从空域变换到频域,从另外一个角度来分析图像的特征并进行处理。频域分析法在图像增强、图像复原、图像编码压缩及特征编码压缩方面有着广泛应用。

如果一个信号f(t)在dd7d4553c3a8abfbfc9ccd45d7a493a1.png上满足:

① f(t)在任一有限区间上满足狄氏条件;

② f(t)在dd7d4553c3a8abfbfc9ccd45d7a493a1.png上绝对可积即edcd0995fa798deb297733308f7b44a0.png

就可以通过傅里叶变换把时域信号f(t)转化到频域进行处理:

124405359cca05a7910b576ceeb420d7.png

然后再通过傅里叶反变换把频域信号转化到时域:

af1ee6ca0b123916a4fe71b16e2d9b58.png

傅里叶变换是线性系统分析的有力工具,提供了一种把时域信号转换到频域进行分析的途径,时域和频域之间是一对一的映射关系。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。

傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的 谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将 图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为 灰度分布函数。

2) 不足之处

经典Fourier变换只能反映信号的整体特性(时域,频域)。对傅里叶谱中的某一频率,无法知道这个频率是在什么时候产生的。从傅里叶变换的定义也可看出,傅里叶变换是信号在整个时域内的积分,因此反映的是信号频率的统计特性,没有局部化分析信号的功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值