【图像增强】基于gabor滤波器实现指纹增强含Matlab源码

本文详细介绍了Gabor滤波器在图像增强中的应用,特别是针对指纹图像的增强。通过阐述Gabor变换的原理、优势及适用条件,展示了一段使用Matlab实现的代码,包括二维Gabor滤波器的设计和滤波过程。通过Gabor滤波器,可以有效地提取图像的局部特征,改善指纹图像的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

D.Gabor 1946年提出

窗口Fourier变换,为了由信号的Fourier变换提取局部信息,引入了时间局部化的窗函数。

由于窗口Fourier变换只依赖于部分时间的信号,所以,现在窗口Fourier变换又称为短时Fourier变换,这个变换又称为Gabor变换。

1) Gabor优点

Gabor小波与人类视觉系统中简单细胞的视觉刺激响应非常相似。它在提取目标的局部空间和频率域信息方面具有良好的特性。虽然Gabor小波本身并不能构成正交基,但在特定参数下可构成紧框架。Gabor小波对于图像的边缘敏感,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,能够提供对光照变化良好的适应性。上述特点使Gabor小波被广泛应用于视觉信息理解。

Gabor滤波器和脊椎动物视觉皮层感受野响应的比较:第一行代表脊椎动物的视觉皮层感受野,第二行是Gabor滤波器,第三行是两者的残差。可见两者相差极小。Gabor滤波器的这一性质,使得其在视觉领域中经常被用来作图像的预处理。

2) Gabor定义

① 具体窗函数――Gaussaion的 Gabor变换定义式

Gabor变换的基本思想

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值