基于DSP的回波抵消器设计与实现
要求:
–掌握回波抵消原理
–掌握NLMS算法
– 完成信号源的MATLAB 仿真
– 用汇编编程实现
– 用CCS 图形功能观察各信号波形
– 讨论:步长因子、滤波器阶数N 对收敛速度的影响
基于LMS算法及其变体算法
在各种各样的自适应算法里,应用最广的自适应算法形式为“下降算法”。
即:
(k 1)=h (k)+ (k 1)v(k 1) (3.2) hnn
(k 1)为第k+1次迭代的权向量, (k 1)为第k+1次迭代的更新步长,式中hn
而v(k 1)为第k+1次迭代的更新方向(向量);
“下降算法”有两种实现方法。一种是“自适应梯度算法”,另一种是“自
适应高斯—牛顿算法”。自适应梯度算法包括LMS(Least Mean Square)算法及其各种变型和改进算法(统称LMS类自适应算法),自适应高斯-牛顿算法则包括RLS(Recursive Least Square)算法及其变型和改进算法。下面首先介绍的是LMS类算法。
1、 LMS算法
最常用的下降算法为“梯度下降法”,常称“最陡下降法”。在这类算法里,
(k)][1]的负梯度,用更新方向向量v(k 1)取作第k次迭代的代价函数J[hn
(k)]”表示。 “ (n) J[hn
有名的LMS自适应算法正是以最陡下降法为原则的,它是一种很有用且很简
单的估计梯度方法,其最核心的思想是用平方误差来代替均方误差。即使e(n)