01 T检验的概念
T检验是通过比较不同数据的均值,研究两组数据之间是否存在显著差异。
02 T检验的分类
T检验的统计方法有三种:
单样本T检验:进行样本均数与已知总体均数的比较;
独立样本T检验:进行两样本均数差别的比较,即通常所说的两组样本的T检验;
在应用T检验进行两样本均数比较时,要求数据满足以下3个条件:
(1)独立性,各观察值之间是相互独立的,不能相互影响;
(2)正态性,各个样本均来自于正态分布的总体;
(3)方差齐性,各个样本所在总体的方差相等。
当数据不服从正态分布或方差不齐时,则考虑使用非参数检验。
配对样本T检验:进行配对样本的均数比较,即配对T检验。
配对样本或称非独立样本,它实际上只有一个样本,但样本中的每一个个体都研究两次。样本先后的顺序是一一对应的。配对的目的在于使研究者除了研究的因素外,做到其他条件大体一致。相当于对影响现象的其他因素(或称其他独立变量)进行了有效控制。
03 案例分析
本次选取《新闻记者》上已发表的《社交媒体政治新闻使用的性别和代际差异——基于中国网民调查的实证分析》一文来帮助大家深入了解一下T检验。研究采用了独立样本T检验和配对样本T检验。
背景:
基于社交媒体成为政治新闻和信息传播新的渠道,实现政治新闻传者和受者双向传播的背景,研究从社交媒体用户的视角出发,实证分析不同类型社交媒体政治新闻使用的差异,以及不同用户群体政治新闻使用的性别和代际差异。
研究问题:
该研究比较分析社交媒体政治新闻使用的性别和代际差异性效应。
研究问题1:强关系社交媒体与弱关系社交媒体政治新闻使用是否存在显著差异性效应?
研究问题2:社交媒体政治新闻使用是否存在显著性别差异性效应?
研究问题3:社交媒体政治新闻使用是否存在显著代际差异性效应?
研究问题4:社交媒体政治新闻使用是否存在性别—代际差异性效应?
变量说明:
强弱关系社交媒体:参照已有研究成果,研究将微信视为强关系社交媒体;微博和网络社区视为弱关系社交媒体。
社交媒体政治新闻使用,分为强关系社交媒体政治新闻使用和弱关系社交媒体政治新闻使用
代际:是本次研究重要的预测变量,研究将1980年前出生的受访群体划分为老一代群体,将1980年后出生的受访群体划分为新生代。
性别:分为男性和女性。
研究过程:
为回答研究问题1,研究采用配对样本T检验的分析方法。
选择配对样本T检验的原因:研究采用配对样本T检验,是对同一批受试者进行测量,是为了比较受试者在强关系社交媒体和弱关系社交媒体上的政治新闻使用水平,分析方法适用。
研究发现,弱关系社交媒体政治新闻使用水平显著高于弱关系社交媒体。
为回答研究问题2、3、4,研究采用独立样本T检验的分析方法。
选择独立样本T检验的原因:分析男性和女性两个群体、老一代和新生代、老一代男性和新生代男性、老一代女性和新生代女性在社交媒体政治新闻使用上的差异,分析方法适用。

在弱关系社交媒体政治新闻使用上:
男性和女性的方差齐性检验不显著(F=3.731,p=0.053>0.05),女性弱关系社交媒体政治新闻使用水平显著低于男性(t=-6.575,p=0.000<0.001)。
老一代和新生代的方差齐性检验显著,老一代和新生代弱关系社交媒体政治新闻使用无显著差异(t=-0.757,p=0.449>0.05)。
老一代男性和新生代男性的方差齐性检验不显著,老一代男性和新生代男性弱关系社交媒体政治新闻使用无显著差异(t=-0.670,p>0.05)。
老一代女性和新生代女性的方差齐性检验显著(F=20.391,p<0.000),老一代女性弱关系社交媒体政治新闻使用水平显著低于新生代女性(t=3.410,p<0.001)。
在强关系社交媒体政治新闻使用上:
男性和女性的方差齐性检验不显著(F=2.731,p=0.098>0.05),女性强关系社交媒体政治新闻使用水平显著高于男性(t=3.1415,p=0.002<0.01)。
老一代和新生代的方差齐性检验不显著,老一代强关系社交媒体政治新闻使用水平显著高于新生代(t=3.846,p<0.001)。
老一代男性和新生代男性的方差齐性检验不显著,老一代男性强关系关系社交媒体政治新闻使用水平显著高于新生代男性(t=3.370,p<0.001)。
老一代女性和新生代女性的方差齐性检验不显著,老一代女性强关系社交媒体政治新闻使用水平显著高于新生代女性(t=3.482,p<0.001)。
研究结论//
(1)强关系社交媒体与弱关系社交媒体政治新闻使用存在显著差异性效应,弱关系社交媒体政治新闻使用水平显著高于强关系社交媒体。
(2)社交媒体政治新闻使用性别差异显著。
(3)社交媒体政治新闻使用代际差异部分显著。
(4)社交媒体政治新闻使用存在性别—代际差异,不同性别群体有不同的表现。