MATLAB在摄影测量编程作业中的应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:摄影测量通过图像数据分析获取空间信息,MATLAB因其强大的数学和图像处理功能,成为学习该领域的理想工具。本编程作业涵盖后方交会、影像匹配和相对定向等关键技术,强调MATLAB编程技巧和数学基础的重要性,并介绍摄影测量在多个领域的应用。通过这个项目,学生能深入理解摄影测量的理论与实践,为未来解决实际问题打下基础。 编程作业_摄影测量_

1. 摄影测量基本概念

1.1 摄影测量学简介

摄影测量学是通过分析摄影成像获取物体表面信息的学科。它利用数学和物理原理,结合图像处理技术,实现对物体或场景的精确测量和三维重建。这一技术广泛应用于地理信息系统(GIS)、建筑施工、考古调查等领域。

1.2 历史发展

摄影测量的历史可以追溯到19世纪中叶,随着摄影技术的发明而诞生。早期依靠人工测量,到20世纪中后期,随着计算机技术的发展,数字摄影测量学逐渐成熟,自动化和精确度大幅提升。

1.3 应用领域

摄影测量技术的应用领域非常广泛,从地形测绘、城市规划,到农业产量估算、灾害监测等,它都是实现数据获取和分析不可或缺的工具。尤其在近来,随着无人机技术的发展,摄影测量在遥感领域的应用更加广泛和深入。

摄影测量的核心在于如何从二维图像中重建三维空间信息,这涉及到复杂的数学模型和算法。在后续章节中,我们将详细探讨这些模型和算法的实现与优化。

2. MATLAB数值计算和可视化工具应用

2.1 MATLAB基础知识概述

MATLAB是一个高性能的数值计算环境和第四代编程语言,广泛应用于工程计算、数据分析、算法开发等领域。它将算法开发、数据可视化、数据分析与数值计算紧密结合,为用户提供了强大的数值计算功能和工具箱。

2.1.1 MATLAB操作界面和基本命令

MATLAB的操作界面主要由命令窗口、编辑器、工作空间、路径和历史等组成。命令窗口是用户与MATLAB交互的主要场所,用户可以在该窗口中输入命令并直接执行。编辑器则用于编写和调试程序代码。

基本命令的使用是MATLAB编程的第一步。例如,创建矩阵可以使用如下命令:

A = [1 2; 3 4];

这段代码创建了一个2x2的矩阵A。MATLAB还提供了许多内置函数,如求和函数 sum 、矩阵乘法函数 * 等,来执行各种数学运算。

2.1.2 MATLAB数值计算功能

MATLAB提供的数值计算功能十分强大。从简单的矩阵运算到复杂的数值分析,如线性代数、微分方程、优化算法等,它都有相应的函数或工具箱支持。例如,求解线性方程组:

x = A\b;

这里 x 是通过矩阵除法求解方程组 Ax = b 的结果。

2.2 MATLAB的图像处理和可视化

2.2.1 图像读取和显示技术

MATLAB在图像处理方面也有着广泛的应用,它能够读取、显示、编辑和分析图像。图像的读取使用 imread 函数:

img = imread('example.jpg');

使用 imshow 函数可以显示图像:

imshow(img);

MATLAB还提供了大量图像处理工具箱,可以用于图像增强、滤波、形态学操作等。

2.2.2 数据可视化与图表绘制

数据可视化是MATLAB的重要功能之一。可以使用 plot bar histogram 等函数绘制不同的图表类型。例如,绘制一个简单的二维线图:

x = 0:pi/50:pi;
y = sin(x);
plot(x, y);
title('Sine Wave');
xlabel('x');
ylabel('sin(x)');

在上述代码中,我们创建了一个正弦波形图,包括标题和坐标轴标签。

2.3 MATLAB在摄影测量中的应用实例

2.3.1 点云数据处理

在摄影测量中,点云数据是重要的信息源,MATLAB可以用来处理这些点云数据。处理点云通常包括去噪、过滤、插值等步骤。例如,使用MATLAB的 pcdenoise 函数去除点云噪声:

% 假设点云数据存储在变量pc中
pc_filtered = pcdenoise(pc);

过滤后,可以使用 plot 函数将点云数据在三维空间中显示出来,进行进一步分析。

2.3.2 摄影测量模拟与分析

MATLAB还可以用来模拟摄影测量的过程,并对结果进行分析。模拟通常涉及相机参数的设置、场景的构建、光线追踪等。分析则可能包含误差的评估、结果的校正等步骤。在模拟摄影测量时,可以利用MATLAB的工具箱如Image Processing Toolbox、Computer Vision Toolbox等,以实现更加精确的建模和分析。

下面是一个简单的模拟摄影测量过程的代码框架:

% 模拟摄影测量过程
% 初始化相机参数
cameraParams = cameraMatrix();

% 建立场景
scene = createScene();

% 光线追踪和场景捕捉
[images, poses] = simulateCapture(scene, cameraParams);

% 分析和校正
analysisResults = analyzeImages(images);

在这里, cameraMatrix createScene simulateCapture analyzeImages 函数是假定存在的,需要根据实际的应用场景实现相应的功能。这个框架体现了MATLAB在摄影测量模拟和分析中的强大应用潜力。

3. 后方交会技术的实现

3.1 后方交会技术理论基础

3.1.1 基本原理和数学模型

后方交会技术是摄影测量中用于确定地面点三维坐标的经典方法之一。它利用相机拍摄的影像信息,结合相机位置和姿态参数,通过数学模型计算出地面点的空间位置。基本原理涉及几何关系的构建,例如将影像上点的位置与相应的地面点位置联系起来,通过已知的相机位置和姿态信息反求地面点。

数学模型主要包含以下步骤: 1. 影像坐标系到相机坐标系的转换 :通过内外方位元素将二维影像坐标转换为三维相机坐标。 2. 相机坐标系到空间直角坐标系的转换 :利用相机的外方位元素将相机坐标转换为地面坐标系下的坐标。

通过这些数学模型,可以建立起摄影测量中的空间后方交会解算模型。

3.1.2 算法的数学推导

设相机中心为原点建立相机坐标系,那么空间点P在相机坐标系下的坐标为 (X, Y, Z),其在影像上的投影点p在像空间坐标系中的坐标为 (x, y, f),f为相机焦距。则有:

x = f * X/Z y = f * Y/Z

通过标定获取相机内参矩阵(焦距f、主点坐标(cx, cy)等),结合外方位元素(例如,相机的姿态角、空间位置等),可以将影像坐标转换为地面坐标。

3.1.3 误差分析和精度控制

在实际操作过程中,误差来源通常包括影像的几何变形、相机的内外方位元素确定不准确、大气折射等因素。为了提高后方交会的精度,通常采用以下方法: 1. 提高影像质量 :使用高分辨率、低畸变的相机。 2. 精确标定相机参数 :通过标定流程得到精确的内参和外参。 3. 实施严格的数据处理 :通过空间后方交会算法,结合最小二乘法等数学工具,对计算结果进行优化。 4. 采用多元数据融合 :引入其他传感器如GPS、惯性导航系统(INS)数据,进行数据融合,提升解算精度。

3.2 MATLAB编程实现后方交会

3.2.1 编程步骤和算法流程

在MATLAB环境下,实现后方交会的步骤可以分解为以下几个关键点:

  1. 读取相机内外方位元素 :这通常包括焦距、主点坐标、外方位元素(如位置坐标和姿态角)等数据。
  2. 影像坐标到相机坐标转换 :根据影像坐标和已知的内参进行转换。
  3. 相机坐标到地面坐标转换 :根据外方位元素和相机到地面点的几何关系进行转换。
  4. 结果验证 :通过与已知坐标进行比较,验证算法的正确性和精度。
  5. 误差分析 :分析可能影响计算结果的误差来源,采取相应的措施进行改进。

以下是一个简化版的MATLAB代码示例,展示了基本的计算流程:

% 假设已知内参和外参
focal_length = 1000; % 焦距,单位毫米
principal_point = [500, 500]; % 主点坐标,单位像素
R = [0.9998 -0.0137 0.0151; % 旋转矩阵,表示相机姿态
     0.0140 0.9999 -0.0034;
     -0.0151 0.0034 0.9999];
T = [-200, 150, 300]'; % 平移向量,表示相机位置,单位毫米
ground_point = [1000, 1500, 500]; % 地面点坐标,单位米

% 影像坐标
image_point = ground2image(ground_point, R, T, focal_length, principal_point);

% 坐标转换为地面坐标
recovered_ground_point = image2ground(image_point, R, T, focal_length, principal_point);

% 辅助函数定义(此处为示例,实际应用中需要根据具体算法实现)
function image_point = ground2image(ground_point, R, T, f, principal)
    % 地面点转影像点的计算
end

function ground_point = image2ground(image_point, R, T, f, principal)
    % 影像点转地面点的计算
end

3.2.2 结果验证和误差分析

在MATLAB中可以进行代码的调试和结果验证。验证通常需要与实际测量数据或者已知的地面点坐标进行对比,来评估后方交会算法的准确性。

% 计算误差
error = norm(ground_point - recovered_ground_point);

% 显示误差结果
disp(['计算得到的误差为: ', num2str(error)]);

如果误差较大,可能需要进一步检查和调整内外方位元素的准确性,优化数学模型和算法参数,或者进行影像数据的预处理,如畸变校正等。

通过上述步骤,我们完成了后方交会技术的基本理论介绍和编程实现。为了更深入理解该技术的实际应用和效果,可以在MATLAB中进行进一步的实验和分析。

4. 影像匹配技术的实现

4.1 影像匹配技术概述

影像匹配是摄影测量中的关键步骤,它通过对比不同影像中的相应点,实现图像之间的几何和空间信息的提取。影像匹配技术广泛应用于遥感、计算机视觉、三维重建等领域。

4.1.1 影像匹配的基本概念

影像匹配(Image Matching)指的是在不同图像之间找到对应关系的过程。这种对应关系可以通过图像上的特征点(如角点、边缘等)来建立。特征点应当具有唯一性,以便在不同图像中被准确识别。影像匹配的核心目的是确定图像间的一致性,进而进行进一步的图像分析和处理。

4.1.2 影像匹配技术的分类

影像匹配技术可以按照不同的特征和方法进行分类。常见的分类有基于区域的匹配和基于特征的匹配。基于区域的方法主要关注像素的灰度或颜色信息,而基于特征的方法则侧重于图像中的显著点、边缘等。此外,还有一种混合匹配方法,结合了上述两种方法的优势。

4.1.3 影像匹配流程

影像匹配的一般流程包括:图像预处理、特征提取、特征匹配、几何变换和后处理等步骤。图像预处理能够增强特征点的可识别性,而特征提取则用于在图像中识别可匹配的点。特征匹配是通过比较不同图像中的特征点来实现匹配。几何变换和后处理则是对匹配结果进行优化和细化。

4.2 MATLAB在影像匹配中的应用

MATLAB作为一种强大的数学计算和可视化软件,提供了丰富的工具箱,使得影像匹配技术在MATLAB环境中得以实现和优化。

4.2.1 特征点提取与描述

在MATLAB中,可以使用内置函数如 detectSURFFeatures 提取SURF特征点。SURF(加速稳健特征)是一种快速提取图像特征的算法,对于旋转和尺度变化具有很好的不变性。特征点提取后,使用 extractFeatures 函数来获取特征点的描述符。

img1 = imread('image1.jpg');
img2 = imread('image2.jpg');
points1 = detectSURFFeatures(rgb2gray(img1));
points2 = detectSURFFeatures(rgb2gray(img2));
[features1, valid_points1] = extractFeatures(img1, points1);
[features2, valid_points2] = extractFeatures(img2, points2);

4.2.2 匹配算法的实现和优化

使用特征点的描述符进行匹配,MATLAB提供了 matchFeatures 函数,该函数可实现基于特征描述符的匹配。为了提高匹配的准确性,通常使用基于距离的匹配方法,如最近邻搜索。此外,可以采用 ransac 函数,利用随机采样一致性算法(RANSAC)剔除误匹配点,进一步优化匹配结果。

indexPairs = matchFeatures(features1, features2);
matchedPoints1 = valid_points1(indexPairs(:, 1), :);
matchedPoints2 = valid_points2(indexPairs(:, 2), :);
[tform, inlierIdx] = estimateGeometricTransform(matchedPoints2, matchedPoints1, 'affine');
matchedPoints1 = matchedPoints1(inlierIdx, :);
matchedPoints2 = matchedPoints2(inlierIdx, :);

4.2.3 影像匹配技术在摄影测量中的应用

将影像匹配技术应用于摄影测量中,可以实现从多幅图像中提取地物的三维坐标信息。例如,在无人机航拍影像中,通过匹配可以找到同一地物在不同角度下的投影点,进而通过数学模型计算得到地物的真实三维坐标。这种方法在城市建模、地形测绘等领域中具有重要的应用价值。

影像匹配技术的实际应用

4.3.1 影像匹配的实际案例分析

实际案例中,影像匹配技术用于对飞行器拍摄的遥感影像进行处理。通过MATLAB中的影像处理工具箱,可以对原始影像进行格式转换、色彩校正等预处理操作。然后,利用特征点提取函数和匹配算法,实现对地物的准确定位和三维重建。

4.3.2 影像匹配技术的优化和展望

随着技术的进步,影像匹配技术也在不断发展。例如,基于深度学习的特征匹配方法,能够在复杂背景下实现更准确的匹配。未来,通过结合多种算法,以及利用云计算等新兴技术,影像匹配技术的应用将更加广泛和高效。

5. 相对定向技术的实现

5.1 相对定向技术的理论基础

5.1.1 相对定向的定义和原理

相对定向是摄影测量中一项重要技术,指的是通过两张有一定重叠度的相片来确定两个摄影瞬间所对应的空间位置关系。通过相对定向,能够将两个不同视角下的像点投影到统一的坐标系中,从而消除由于摄影机位置不同而产生的视角差异,为进一步的摄影测量分析提供基础。相对定向的主要任务包括确定像片之间的旋转参数、平移参数以及比例因子。

5.1.2 相对定向的数学模型

相对定向的数学模型通常涉及旋转矩阵和仿射变换。为了精确实现相对定向,需要通过数学建模和算法运算,建立两张相片之间的坐标变换关系。常用的数学模型包括最小二乘法、迭代法等。这些方法通过最小化像点在两视图间的距离差异,来估计出最佳的相对定向参数。在实际应用中,这一步骤对于模型的精确性和计算效率都是至关重要的。

5.2 MATLAB实现相对定向

5.2.1 算法实现的步骤

在MATLAB中实现相对定向技术,首先需要读取两张相片的像点坐标,然后进行以下步骤:

  1. 初始值的估算。通过选取相片中的匹配点对,利用初等几何的方法获得旋转矩阵和平移向量的初始估计值。
  2. 最小二乘法求解。利用最小二乘法对估计值进行优化,得到更为精确的相对定向参数。
  3. 参数的迭代更新。反复迭代更新步骤2,直到达到预定的迭代次数或者参数收敛。
% 假设已知匹配点对坐标
pointPairs = [ ... ] % 配准点对坐标数据
% 初始值估算
% ...(此处为代码和逻辑分析)
% 最小二乘法求解相对定向参数
% ...(此处为代码和逻辑分析)
% 参数的迭代更新
% ...(此处为代码和逻辑分析)

5.2.2 实验结果的分析与讨论

实现相对定向后,需要分析实验结果,这通常包括对如下几个方面进行评估:

  • 定向精度:通过实际和理论坐标差来评估定向的精度。
  • 稳定性:通过多次实验来评估算法的稳定性和鲁棒性。
  • 计算效率:分析算法执行所需的时间,以评估其在实际应用中的适用性。

此外,还需要对实验中可能出现的误差来源进行分析,如相机畸变、外部环境影响、图像匹配精度等,并探讨相应的解决策略或优化方法。

实验结果分析通常需要以图表的形式展示,下面是展示实验结果的一个示例:

flowchart LR
    A[实验结果分析] -->|定向精度| B[误差评估]
    A -->|稳定性| C[多次实验对比]
    A -->|计算效率| D[时间消耗分析]
    B --> E[误差来源分析]
    C --> E
    D --> E

实验结果的讨论不仅有助于提升当前算法的性能,还可以为未来研究提供方向和建议。通过将结果与现有的其他相对定向方法进行比较,可以进一步评价所提出方法的优劣。此外,针对算法在实际应用场景中的表现,也可以提供改进和优化的方向。

6. MATLAB编程技能的提升

6.1 MATLAB编程基础

6.1.1 MATLAB编程规范

编程规范在任何编程语言中都扮演着重要角色,它不仅帮助程序员保持代码的一致性和可读性,还能够减少错误和提高代码维护的效率。在MATLAB中,良好的编程规范同样重要。例如,应当合理使用空格和缩进来增强代码的可读性,变量名应该能够反映出其代表的数据含义,同时避免使用MATLAB内置函数的名称作为变量名。此外,对于长代码行应适当进行拆分,并通过添加注释来说明每段代码的作用,以方便代码的后续理解和修改。

% 示例:良好的MATLAB编程规范
% 命名规范
variableName = 10; % 说明变量的含义和作用

% 使用空格和缩进规范代码布局
for i = 1:10
    disp(['Loop iteration: ', num2str(i)]);
end

% 函数编写规范
function result = addNumbers(a, b)
    % This function adds two numbers and returns the result.
    result = a + b;
end

6.1.2 脚本和函数编写技巧

在MATLAB中,脚本和函数是组织代码的两种基本方式。脚本是一系列无输入输出的命令组合,用于自动化重复性任务。而函数则是带有输入输出参数的代码块,用于封装特定功能。掌握编写脚本和函数的技巧,可以大大提高编程效率和代码的复用性。

% 脚本示例
% 保存为 example_script.m
x = 1:10;
y = x.^2;
plot(x, y);
title('Square Function Plot');
xlabel('x');
ylabel('y');

% 函数示例
% 保存为 addNumbers.m
function result = addNumbers(a, b)
    % This function adds two numbers and returns the result.
    result = a + b;
end

在编写函数时,应考虑其通用性和可维护性。函数应尽量实现单一职责,并具有清晰的输入输出接口。此外,应为函数编写帮助文档,以帮助用户了解函数的用途和使用方法。

6.2 高级编程技巧

6.2.1 结构化编程与代码优化

结构化编程是一种编程范式,它鼓励使用顺序、选择(条件语句)和循环结构来组织代码,而避免使用非结构化控制语句,如 goto。结构化编程有助于提高代码的清晰度和可维护性。在MATLAB中,应重视向量化操作,以减少循环使用,并提高代码的运行效率。

% 避免使用循环进行向量操作的示例
x = 1:1000;
y = x.^2; % 向量化操作

% 代码优化技巧
% 使用内置函数进行矩阵运算
A = rand(1000);
B = rand(1000);
C = A * B; % 利用MATLAB的矩阵运算优化性能

% 使用预分配来优化循环
n = 10000;
v = zeros(1, n); % 预分配内存
for i = 1:n
    v(i) = i^2;
end

6.2.2 并行计算和性能加速

在处理大规模数据集或复杂的数值计算时,单线程的执行可能成为瓶颈。MATLAB支持并行计算,可以通过使用多核处理器来加速代码执行。利用MATLAB的 Parallel Computing Toolbox,可以轻松实现并行计算。

% 使用parfor进行并行for循环的简单示例
parfor i = 1:n
    result(i) = someExpensiveFunction(i);
end

% 利用MATLAB的分布式数组进行数据的并行处理
distArray = distributed(someLargeMatrix);
result = distArray * 2;

通过并行计算,可以显著提升代码的处理速度,特别是在进行大规模矩阵运算或需要重复执行的任务时。然而,需要注意的是,不是所有代码都适合并行化,且在并行计算中管理数据的分配和同步可能会更加复杂。

在下一章节中,我们将继续深入了解在MATLAB中实现高级数学模型和算法的相关知识,从而进一步提升摄影测量中的数据处理和分析能力。

7. 摄影测量数学基础

摄影测量是利用摄影机拍摄的影像信息,通过数学方法恢复出被摄物体的几何与物理信息的学科。在这一过程中,数学不仅为摄影测量提供了理论基础,还帮助我们建立了各种实用的数学模型,从而在不同的条件下实现精确的测量。

7.1 摄影测量中的几何基础

摄影测量的几何基础是摄影机成像几何关系和各种几何变换,它们是通过数学方法对实际问题进行建模和解析的基础。

7.1.1 几何变换和投影理论

在摄影测量中,我们常常需要处理二维影像与三维场景之间的关系。这些关系可以通过几何变换和投影理论来进行精确的数学描述。例如,对摄影影像进行校正、重建三维模型,都需要应用到这些基础理论。

  • 仿射变换 :这是最基础的几何变换之一,允许图形进行缩放、旋转、平移和倾斜等操作,但保持了图形的“平直性”和“平行性”。
  • 透视变换 :这种变换考虑了透视效果,当观看点与投影平面存在距离时,远处物体看起来会变小,近处物体看起来会变大。
  • 投影理论 :将三维空间中的点投影到二维平面,常见的投影类型包括正射投影、中心投影等。
% 仿射变换示例代码
A = [1 0 0; 0 1 0; tx ty 1]; % 平移变换矩阵
imgTransformed = imtransform(img, A, 'bilinear');

% 透视变换示例代码
H = [h11 h12 h13; h21 h22 h23; h31 h32 h33]; % 透视变换矩阵
imgPerspective = imtransform(img, H, 'bilinear');

7.1.2 坐标系和空间变换

在摄影测量中,坐标系的选择和变换也是极为重要的基础概念。在进行测量时,通常需要建立摄影机坐标系、物体坐标系和世界坐标系,并通过坐标变换将物体的实际位置和形状描述出来。

  • 世界坐标系 :相对于地球或测量区域的固定坐标系。
  • 摄影机坐标系 :以摄影机为原点的坐标系。
  • 物体坐标系 :与被摄物体固连的坐标系。
  • 刚体变换 :包含旋转和平移的变换,用于在不同坐标系间转换点的位置。
% 坐标变换示例代码
R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; % 旋转矩阵
T = [tx; ty]; % 平移向量
P_world = R * P_camera + T; % 从摄影机坐标系转换到世界坐标系

7.2 摄影测量中的数学模型

摄影测量中的数学模型主要解决如何根据摄影影像数据,通过数学方法恢复出物体的三维空间信息的问题。

7.2.1 光束平差法的基本概念

光束平差法是摄影测量中的一种常用数学方法,用于根据多个不同位置的摄影影像重建出三维空间模型。它考虑了由于测量误差而导致的影像位置与真实位置之间的偏差,通过最小化这些偏差来提高重建模型的精度。

  • 误差分析 :识别和分析影响测量精度的误差源,如摄影机标定误差、影像匹配误差等。
  • 最小二乘法 :通常采用最小二乘法作为基础算法,通过迭代求解过程逐步减小误差,直到达到预设的精度。

7.2.2 数学模型的建立与求解

建立数学模型是通过一系列的数学公式来表示摄影测量中的成像关系和空间几何关系。而模型的求解往往依赖于优化算法,例如梯度下降法、共轭梯度法等,求解出模型中未知的参数。

  • 成像关系方程 :包括内外方位元素等摄影测量专业方程。
  • 求解算法 :选择合适的优化算法根据方程求解参数。
  • 模型验证 :通过实测数据对模型进行验证,确保模型的准确性与实用性。
% 最小二乘法求解示例代码
X = A \ b; % A为系数矩阵,b为常数项向量,X为未知数向量

% 模型验证
error = norm(A*X - b); % 计算残差
disp(['模型误差: ', num2str(error)]);

以上内容为摄影测量数学基础的详细解析,摄影测量作为一门理论与实践紧密结合的学科,其数学基础对于从事该领域工作的工程师和学者至关重要。通过本章节的介绍,您将更深入地理解摄影测量的核心原理和计算方法。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:摄影测量通过图像数据分析获取空间信息,MATLAB因其强大的数学和图像处理功能,成为学习该领域的理想工具。本编程作业涵盖后方交会、影像匹配和相对定向等关键技术,强调MATLAB编程技巧和数学基础的重要性,并介绍摄影测量在多个领域的应用。通过这个项目,学生能深入理解摄影测量的理论与实践,为未来解决实际问题打下基础。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值