kafka java生产者_kafka生产者Java客户端

支持的版本

>= 0.9

kafka客户端发布record(消息)到kafka集群。

新的生产者是线程安全的,在线程之间共享单个生产者实例,通常单例比多个实例要快。

一个简单的例子,使用producer发送一个有序的key/value(键值对),放到java的main方法里就能直接运行,

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

Producer producer = new KafkaProducer<>(props);

for(int i = 0; i < 100; i++)

producer.send(new ProducerRecord("my-topic", Integer.toString(i), Integer.toString(i)));

producer.close();

生产者的缓冲空间池保留尚未发送到服务器的消息,后台I/O线程负责将这些消息转换成请求发送到集群。如果使用后不关闭生产者,则会丢失这些消息。

send()方法是异步的,添加消息到缓冲区等待发送,并立即返回。生产者将单个的消息批量在一起发送来提高效率。

ack是判别请求是否为完整的条件(就是是判断是不是成功发送了)。我们指定了“all”将会阻塞消息,这种设置性能最低,但是是最可靠的。

retries,如果请求失败,生产者会自动重试,我们指定是0次,如果启用重试,则会有重复消息的可能性。

producer(生产者)缓存每个分区未发送的消息。缓存的大小是通过 batch.size 配置指定的。值较大的话将会产生更大的批。并需要更多的内存(因为每个“活跃”的分区都有1个缓冲区)。

默认缓冲可立即发送,即便缓冲空间还没有满,但是,如果你想减少请求的数量,可以设置linger.ms大于0。这将指示生产者发送请求之前等待一段时间,希望更多的消息填补到未满的批中。这类似于TCP的算法,例如上面的代码段,可能100条消息在一个请求发送,因为我们设置了linger(逗留)时间为1毫秒,然后,如果我们没有填满缓冲区,这个设置将增加1毫秒的延迟请求以等待更多的消息。需要注意的是,在高负载下,相近的时间一般也会组成批,即使是 linger.ms=0。在不处于高负载的情况下,如果设置比0大,以少量的延迟代价换取更少的,更有效的请求。

buffer.memory 控制生产者可用的缓存总量,如果消息发送速度比其传输到服务器的快,将会耗尽这个缓存空间。当缓存空间耗尽,其他发送调用将被阻塞,阻塞时间的阈值通过max.block.ms设定,之后它将抛出一个TimeoutException。

key.serializer和value.serializer示例,将用户提供的key和value对象ProducerRecord转换成字节,你可以使用附带的ByteArraySerializaer或StringSerializer处理简单的string或byte类型。

幂等和事务

从Kafka 0.11开始,KafkaProducer又支持两种模式:幂等生产者和事务生产者。幂等生产者加强了Kafka的交付语义,从至少一次交付到精确一次交付。特别是生产者的重试将不再引入重复。事务性生产者允许应用程序原子地将消息发送到多个分区(和主题!)。

要启用幂等(idempotence),必须将enable.idempotence配置设置为true。 如果设置,则retries(重试)配置将默认为Integer.MAX_VALUE,acks配置将默认为all。API没有变化,所以无需修改现有应用程序即可利用此功能。

此外,如果send(ProducerRecord)即使在无限次重试的情况下也会返回错误(例如消息在发送前在缓冲区中过期),那么建议关闭生产者,并检查最后产生的消息的内容,以确保它不重复。最后,生产者只能保证单个会话内发送的消息的幂等性。

要使用事务生产者和attendant API,必须设置transactional.id。如果设置了transactional.id,幂等性会和幂等所依赖的生产者配置一起自动启用。此外,应该对包含在事务中的topic进行耐久性配置。特别是,replication.factor应该至少是3,而且这些topic的min.insync.replicas应该设置为2。最后,为了实现从端到端的事务性保证,消费者也必须配置为只读取已提交的消息。

transactional.id的目的是实现单个生产者实例的多个会话之间的事务恢复。它通常是由分区、有状态的应用程序中的分片标识符派生的。因此,它对于在分区应用程序中运行的每个生产者实例来说应该是唯一的。

所有新的事务性API都是阻塞的,并且会在失败时抛出异常。下面的例子说明了新的API是如何使用的。它与上面的例子类似,只是所有100条消息都是一个事务的一部分。

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("transactional.id", "my-transactional-id");

Producer producer = new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());

producer.initTransactions();

try {

producer.beginTransaction();

for (int i = 0; i < 100; i++)

producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i)));

producer.commitTransaction();

} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {

// We can't recover from these exceptions, so our only option is to close the producer and exit.

producer.close();

} catch (KafkaException e) {

// For all other exceptions, just abort the transaction and try again.

producer.abortTransaction();

}

producer.close();

如示例所示,每个生产者只能有一个未完成的事务。在beginTransaction()和commitTransaction()调用之间发送的所有消息都将是单个事务的一部分。当指定transactional.id时,生产者发送的所有消息都必须是事务的一部分。

事务生产者使用异常来传递错误状态。特别是,不需要为producer.send()指定回调,也不需要在返回的Future上调用.get():如果任何producer.send()或事务性调用在事务过程中遇到不可恢复的错误,就会抛出KafkaException。

该客户端可以与0.10.0或更高版本的broker进行通信。旧的或较新的broker可能不支持某些客户端功能。例如,事务性API需要 0.11.0或更新版本的broker。当调用在运行的broker版本中不可用的API时,您将收到UnsupportedVersionException。

send()

public Future send(ProducerRecord record,Callback callback)

异步发送一条消息到topic,并调用callback(当发送已确认)。

send是异步的,并且一旦消息被保存在等待发送的消息缓存中,此方法就立即返回。这样并行发送多条消息而不阻塞去等待每一条消息的响应。

发送的结果是一个RecordMetadata,它指定了消息发送的分区,分配的offset和消息的时间戳。如果topic使用的是CreateTime,则使用用户提供的时间戳或发送的时间(如果用户没有指定指定消息的时间戳)如果topic使用的是LogAppendTime,则追加消息时,时间戳是broker的本地时间。

由于send调用是异步的,它将为分配消息的此消息的RecordMetadata返回一个Future。如果future调用get(),则将阻塞,直到相关请求完成并返回该消息的metadata,或抛出发送异常。

如果要模拟一个简单的阻塞调用,你可以调用get()方法。

byte[] key = "key".getBytes();

byte[] value = "value".getBytes();

ProducerRecord record = new ProducerRecord("my-topic", key, value)

producer.send(record).get();

完全无阻塞的话,可以利用回调参数提供的请求完成时将调用的回调通知。

ProducerRecord record = new ProducerRecord("the-topic", key, value);

producer.send(myRecord,

new Callback() {

public void onCompletion(RecordMetadata metadata, Exception e) {

if(e != null)

e.printStackTrace();

System.out.println("The offset of the record we just sent is: " + metadata.offset());

}

});

发送到同一个分区的消息回调保证按一定的顺序执行,也就是说,在下面的例子中 callback1 保证执行 callback2 之前:

producer.send(new ProducerRecord(topic, partition, key1, value1), callback1);

producer.send(new ProducerRecord(topic, partition, key2, value2), callback2);

注意:callback一般在生产者的I/O线程中执行,所以是相当的快的,否则将延迟其他的线程的消息发送。如果你需要执行阻塞或计算昂贵(消耗)的回调,建议在callback主体中使用自己的Executor来并行处理。

pecified by:

send in interface Producer

Parameters:

record - 发送的记录(消息)

callback - 用户提供的callback,服务器来调用这个callback来应答结果(null表示没有callback)。

Throws:

InterruptException - 如果线程在阻塞中断。

SerializationException - 如果key或value不是给定有效配置的serializers。

TimeoutException - 如果获取元数据或消息分配内存话费的时间超过max.block.ms。

KafkaException - Kafka有关的错误(不属于公共API的异常)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值