均值定理最大值最小值公式_高中数学:均值定理的“凑”与“配”

不等式中的均值定理一直是高中数学的重点内容,同时也是高考的重点和热点,也是解决很多问题的重要工具,应用均值定理的前提是满足“一正、二定、三相等”,不过很多时候,题目的条件不满足这一条件,这时就需要适当的“凑”与“配”,下面结合具体例子予以说明。   一、凑“正” 例1. 求52813dc8f67fefb22d07dd9a6606a97b.png的值域。 解:将 003efc930cb415222677b99d3ef18c9b.png变形为8284c7996f5db2870ca57a3e69172e04.png后可用基本不等式,但不清楚是否为正,因此需要讨论。 由已知得a160dc9d0df54c2a261fbd42ef370e5f.png。 (1)若999b508ab2c64ffc06312ee1edf64696.png,则eb6292425432f9f512561b3207f50098.png,故1f2f984b5ec664ebc980622bf90cb734.png,当且仅当2d3ab91ac89b2d9178e4b472aefe2d81.png,即b31ef8cebbbbe5ae12d8aeaa73eee242.png时,取等号。 (2)若1b561d67520461c165925c528fdd039a.png,则56396f6ed1ede058bfa83ff724103aa5.png,故8e1650ff6dcc90e3ff70b160dd7c6001.png ef87f5789831ce248f9d1236378048eb.png。 ∴44819ff3b3e0a718cbc0aaf8febd7670.png,当且仅当6aad5161b2f5c566a8ed7718fe1621a4.png,即4e807fe651675d687119c889c0d998dc.png时,取等号。 因此,由(1)、(2)可知b0dbc60b3a2a38d1a884c289fd12e40f.png的值域为95d97221670f96aff14a9e2eb9b33c79.png。 本题说明“各项为正”这一条件的重要性,当不确定时应进行分类讨论。   二、凑、配“定值” 1. “凑”和为定值 例2. 设一个圆柱的轴截面周长为l,求其侧面积的最大值。 解:设圆柱底面半径为 r,高为h,侧面积为S,满足61e1063822f6edb88acca93623de9920.pngf1038e4b631efeed6242a590455567b1.png。 当且仅当c450ad70225e48509d3d43b6c111498f.png,即e62256ebe34e2c64e7c0b8efe46d9fdd.png时,S有最大值029cdb7cfaa47629ddfc4d588e4ce03f.png。 对已知式子进行恰当的“凑”与“配”,再利用基本不等式求最值,这种技巧经常被使用。 2. “配”积为定值 例3. 已知072a53aee6a7d0695aba759941479af4.png3bedc2adb0e620a277f63329770a2e2d.png,且44a980bbf0ef2583e6857f2e0c657154.png,求183ab3ab61acf1c0389ac37959a583dd.png的最小值。 解:∵ 44a980bbf0ef2583e6857f2e0c657154.png, ∴1da25900a99bf1ddb8e8909244174fca.png。 ∵072a53aee6a7d0695aba759941479af4.png3bedc2adb0e620a277f63329770a2e2d.png, ∴8caaeab3cadf9da9e14eb982354db4b4.png。 当且仅当a42dbc19d8860eab094fc033955e2bb0.png,即d4f300342466f58c672444eb45a0c09a.png时,取等号。 解得当cb1cb72cca59fb96958444e1dda98236.png22927b22f9669f0c71a2283fc073e9b4.png时,183ab3ab61acf1c0389ac37959a583dd.png取得最小值为16。   三、凑“相等” 例4. 求函数97395da84e8f9e463a2cd9e677fde210.png的最小值。 解: ed88caa44c0e4857ceb87666e9f3b685.png。 设b06f341392121cc46f52428d7ce8759e.png,则da9c28d4945f1c961695e9251bbccf51.png,此时原式可化为59fa0b7c305dcea3be392f2b2f223adb.png。 ∵da9c28d4945f1c961695e9251bbccf51.png, ∴f9dfb5ef3c93a0c475cf6f7ed897f6fc.png。 ∴c31f3a9dd0066d84907ec85a664f680a.png。 当且仅当2bc58f208d2643f2ccf02a5936f2db4e.png,即868f9c5091eb2384567cb85b0c7c6dff.pnga78e198ff9e202efa7f7bb17dddc82ef.png时取等号,此时a78e198ff9e202efa7f7bb17dddc82ef.png,解得505568885b5e94b0aed0149c85a43b45.png。 ∴d950047593633cf11aa214e7f202bddf.png。 此题是通过加减项的方法配凑成基本不等式的形式,注意换元后 da9c28d4945f1c961695e9251bbccf51.png,若对cb9792172445a1b15eef14a479f5a75b.png直接利用均值定理,则需满足4947e32a1f59a1254a5dfcd31fded8d8.png,即9f0573327cb5b4c99f48289a83b704d9.png1a4e1e786fe01a525d14364d6c892a6e.png,而在da9c28d4945f1c961695e9251bbccf51.png时,无法达到,因此需要凑配“相等”以及积为定值,方可利用均值定理。

▍ 来源:综合网络

▍ 编辑:Wordwuli

▍ 声明:如有侵权,请联系删除;若需转载,请注明出处。

▍ 提示:①更多精彩内容,请点击文章标题下方的公众号名称查看;②进入公众号后,发送关键词给我,我会立即回复相关内容给您。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值