漫步数学分析三十五——均值定理

我们现在考虑两个非常重要的定理,也就是均值定理与泰勒(Taylor)定理。首先,我们考虑均值定理,我们先回顾一下基本微积分中的均值定理,如果 f:[a,b]R 是连续的,在 (a,b) 上可微,那么存在点 c(a,b) 使得 f(b)f(a)=f(c)(ba) ,其中 f=df/dx

不幸的是,对于 f:ARnRm 而言,这个均值定理不为真。例如考虑 f:RR2 ,其定义为 f(x)=(x2,x3) ,我们现在试着找出 c 使得0c1并且 f(1)f(0)=Df(c)(10) ,这就意味着 (1,1)(0,0)=(2c,3c2) ,从而 2c=1,3c2=1 ,很显然不存在满足这些等式的 c

经验启发我们应该还需要一些限制条件,这样的话为了使得上面的版本正确,f必须是实值函数,为了得到正确的定理我们首先精确定义对 c,x,yRn 而言 c x,y之间是什么意思。

我们说 c 位于连接x,y的线段上或在 x,y 之间,如果存在 0λ1 使得 c=(1λ)x+λy ,如图1


这里写图片描述
图1

7
(i) 假设 f:ARnR 在开集 A 上可微,对于使得x,y之间的线段位于 A 中的任意x,yA,存在点 c 位于那条线段上使得

f(y)f(x)=Df(c)(yx)

(ii) 假设 f:ARnRm 在开集 A 上可微,假设连接x,y的线段位于 A 中并且f=(f1,,fm),那么在那条线段上存在点 c1,,cm 使得

fi(y)fi(x)=Dfi(ci)(yx),i=1,,m

1 对于集合 ARn ,如果对每个 x,yA ,连接他们的线段也位于 A 中,那么该集合称为凸集,如图???所示。令 ARn 是开凸集并且 f:ARm 是可微的,如果 Df=0 ,那么说明 f 是常数。

对于 x,yA ,对于每个元素 fi ,我们有向量 ci 使得

fi(y)fi(x)=Dfi(ci)(yx)

因为对于每个 i,Df=0,Dfi=0 所以 fi(y)=fi(x) ,从而 f(y)=f(x) ,这就意味着 f 是常数。


这里写图片描述
图2

2假设 f:[0,]R 是连续的, f(0)=0 f (0,)上可微且 f 是非减的,证明对于 x>0 而言 g(x)=f(x)/x 是非减的。

从均值定理我们可以看出如果函数 h h(x)0,那么 h 是非减的,因为xy意味着

h(y)h(x)=h(c)(yx)0

接下来

g(x)=xf(x)f(x)x2

并且

f(x)=f(x)f(0)f(c)xxf(x)

因为 0<c<x,f(x)f(c) ,从而 xf(x)f(x)0 ,所以 g0 ,这就意味着 g <script type="math/tex" id="MathJax-Element-3542">g</script>是非减的。

博文pdf版本下载地址:http://pan.baidu.com/s/1nv7D7rN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值