首先来看一道来自clark的题:

原文链接:Clark:一道原创题(解答已出)
我先给出一个简单粗暴的做法:
构造
求助于泰勒:
则
令
则
于是
回到原题,我们有
因而
分离参数是我们解决多变量问题的重要手段之一,对于偏移问题来说也是如此。
在本文中,我将尝试对一道例题给出几种不同的分离参数的做法。
还是回到那个经典的问题:
法一:将问题转化为
在本题中
具体过程我已在everlasting:偏移与微分方程一文中给出,这里不再赘述。
这个做法是一个相对直观,并且较为通用的做法。如果引入隐函数这一工具,适用范围可以扩大,理论上可以解决所有偏移问题。
法二:将问题转化为
这也就是开篇的例题的做法。注意到
由于这个方法较为罕见,因此这个方法将会是我们今天讨论的重点。
对于欲证式的左侧:
构造
这里也可以构造
当然还有一些其他变形方法:
考虑加强结论
这样我们只需证明
所构造的函数也是
对于欲证式的右侧:
仿照上面的转化方式可得欲证式等价于
我们发现这个函数和
当然,当我们展开足够的阶数,就能发现:
这个函数是单调的。这是因为加上
这里像不像泰勒展开?事实上,在这个例子中我做的事情就是把函数
有读者反馈不能理解这个过程,我就写一个具体的展开过程:
先把
这样构造出来的函数不会单调,因为四阶导不是0。因此继续把
如果五阶项是0,还要继续展开,不过在这里五阶项已经不是0了。
因此我们构造的函数就是
这个构造并不是唯一的,譬如
根据上面的构造,我们有
只要证明
这个方法依赖于所给两个式子的对称性,如果需要证明
这个方法最大的难点在于函数的构造。构造出符合条件的函数并不难,但是我们却希望新构造的函数的单调性尽可能容易讨论。不过这个方法依然是一个不错的方法。
要注意的是这里给出的构造都是改动
法三:齐次化。令
严格来说齐次化并不是一种分参方法,而是利用指数函数和对数函数的基本性质进行的消参。不过和分参一样本质上都是为了减少参数的个数,我就写在这里了。
这道题用齐次化方法是需要用到极限的,不适合在答题卡上书写,不过对于一些不需要用到极限的题还是可以使用的。
需要注意的是这种方法并不局限于
除此之外,齐次化方法也可以用于解决某些仅有多项式的函数的问题,如:
原创
求证:
由函数单调性可知函数有三个实根(
令
由
经过几步转化,欲证式等价为证
注意到
所以当
得证。
法四:直接利用小量分析探讨
参考everlasting:偏移与无穷小量一文,我们可以直接简单粗暴地在局部估计出
这是个万金油做法,虽然太过暴力,但确实很有效。
除了上述的方法之外,我们还有其他的分参的方式。当然,这些方法的范围就很广了,比如利用不等式分参。很多时候解决偏移也不需要进行分参,比如许多简单问题可以直接利用对数均值不等式解决。
我写下这几篇文章,主要是为了探讨偏移问题的背景,并给出几个特别的做法。读者可以自行尝试用其中一些“非主流”的做法解决问题。