拟合一条曲线_干货 | Origin怎样拟合柱状图、延长拟合曲线、绘制双Y图?5min搞定!...

本篇博客详细介绍了如何使用Origin软件进行柱状图的拟合操作,并展示了如何延长拟合曲线以及绘制双Y坐标轴图表。适合需要进行数据处理和图形展示的科研工作者,通过5分钟的学习,轻松掌握这些技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9854a70f89af1f0481c1a44a55fb68da.png f0f3362f0aca183edcc6eac63008cb95.png 【导读】 武大的蒲博士提问:有一个柱状图,拟合了一条曲线,怎样延长拟合曲线到某个点?谭老师没细想说利用Draw工具按照拟合曲线的趋势“画数据”补充几个趋势上的点。 现在细想起来,这种方法太Low了。今天谭老师分享一个教程:利用Origin怎样严谨地延长拟合曲线,同时演示绘制双Y图的简单步骤。让大家5分钟轻松掌握这些绘图技能。 1. 演示软件 本教程演示采用Origin8.5版本,也适用于更高版本。 2. 数据表 我们通过实验,可能会得到一组XY数据,拷贝这些数据,在origin软件的空白数据表中粘贴,得到下图所示的工作簿。 bc4afd4ad1e07f4baf4f9f885b05dbc4.png 3. 绘制一张柱状图 按下图,选择数据,绘制柱状图。 fb38664b7651b538061b8d188c8e4f20.png 4. 拟合柱状图 点击绘图,按Ctrl+Y,或者选择菜单:Analysis-Fitting-Nonlinear Curve Fit-Open Dialog… c32eef71d782eaf0a8e3af29f99ce56f.png 弹出对话框如下,选择基本函数Gauss,然后点击Fit按钮。 a84d6df618d1b2cdb3df4e42f3c952d3.png 当然,根据不同的需要,可以选择不同的拟合函数。得到下图所示的拟合结果:工作簿中新增了两张表(拟合结果);图中增加了一条拟合曲线。 ebbde8316a8ba9f24cb7b7b097c58b2a.png 为了后续的绘图操作,我们将数据表中的拟合数据与原始数据拷贝到一张新建表格中。按照下图①~④步骤操作。 436b165ae72775ae9d0de7c6903f48f8.png 5. 延长拟合曲线 选择上述新表数据(4列),绘制折线图。 9184c4df956e149ee997505e58a927b0.png 点击两次拟合曲线(不是双击哦),然后点击菜单:Analysis-Mathematics-Interpolate/Extrapolate-Open Dialog… fb7a051eda5c0ecdf8272218a5669e5d.png 于是,弹出下面的对话框,我们可以去除“Auto”勾选,设置我们需要延长的X最小或最大值。另外,可以通过增大或减小number of Points(点数)实现对数据的扩充或压缩。 d266c836dbc9579f16140928b5c9f957.png 点击OK按钮后,得到下图。在原数据表中新增了一列延长的拟合数据。 d8927220f741d6b860297543ee3aba49.png 6. 绘制双Y图 选择数据,按下Ctrl键不放,点击数据列顶部的列标签,挑选所需数据,点击下方工具栏的双Y图工具绘图。 5c03540540609efa6401b424904de311.png 修改两种类型的图形,首先点击某条曲线,再点击下方的图形类型工具。 278aa3d7ec31f8c780be829975906373.png 横轴刻度值数据太大,双击横轴刻度值,通过下图的步骤调整。 cd96303e76b19fa4d6fe086ae977c55a.png 经过修改后,得到下图的效果: 4e804aa38f3cca0f7ccd7ee0ccf5e88f.png

学术交流QQ群:729213001

文献共享QQ群: 787600057

学研汇 是国内技术领先的一站式科研服务平台,旗下包括 学研汇 丨材料测试与研发平台, 微著数据 丨数据分析计算模拟平台, 画微堂 丨科学可视化平台学研课堂 丨科研技能精品课程等系列品牌和服务,多年来为海内外高等院校、研究院所以及企业提供多元化全方位科研服务,获得一致好评。 为加强科研交流,学研汇组建了多个高水平硕士博士交流群,进群可以先加小编微信号,并备注昵称+单位+研究方向,否则不予通过,谢谢。 a41b53fac578c30454fd4b44b5b11ba3.png 小编微信:sci-huoxiongmao 36c4daa21d0df638205a3f78cb7f724f.png 8ba0cedf945c3512298e2330ae4f195d.png
城市空气质量是人们日常生活中非常关注的一个问题,通过数据分析和机器学习可以更加准确地预测城市空气质量变化趋势,为政府和公众提供科学依据和决策支持。下面介绍如何用 Python 和 KNN 算法实现城市空气质量分析与预测。 ## 数据准备 首先需要收集城市空气质量相关数据,例如空气质量指数(AQI)、二氧化硫(SO2)、氮氧化物(NOx)、PM2.5 等数据。可以从国家环境保护部等渠道获取历史数据,也可以通过传感器等设备实时采集数据。这里以北京市 2014 年至 2017 年的 AQI 数据为例。 ## 数据预处理 获取数据后需要进行数据清洗和预处理,包括删除重复数据、处理缺失值、格式转换等。同时还需要进行特征工程,提取与问题相关的特征,例如时间、天气、地理位置等。这里以时间和 AQI 为特征,对数据进行预处理和特征提取。 ## KNN 算法 KNN(k-Nearest Neighbor)算法是一种简单而有效的机器学习算法,它通过计算样本之间的距离,找到与目标样本最近的 k 个样本,然后根据这 k 个样本的标签进行预测。KNN 算法可以用于分类和回归问题,这里我们将其应用于回归问题,即预测 AQI 值。 ## 代码实现 下面是用 Python 和 KNN 算法实现城市空气质量分析与预测的代码,其中使用了 pandas、numpy、sklearn 等常用库。 ``` import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split # 读取数据 df = pd.read_csv('aqi.csv') # 删除重复数据 df.drop_duplicates(inplace=True) # 处理缺失值 df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) # 特征提取 df['year'] = pd.to_datetime(df['time']).dt.year df['month'] = pd.to_datetime(df['time']).dt.month df['day'] = pd.to_datetime(df['time']).dt.day X = df[['year', 'month', 'day']].values y = df['aqi'].values # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # KNN 算法 knn = KNeighborsRegressor(n_neighbors=3) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) # 结果评估 print('R2 score:', knn.score(X_test, y_test)) ``` ## 结果分析 运行代码后,可以得到预测结果的 R2 分数,用于评估模型的预测精度,分数越接近 1 表示预测精度越高。可以通过调整 KNN 算法的参数和特征工程等方法来进一步提高预测精度。 以上就是用 Python 和 KNN 算法实现城市空气质量分析与预测的方法,希望能对大家有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值