序列标注_NER(序列标注任务)样本不均衡处理

本文探讨了在序列标注任务中遇到的样本不均衡问题,特别是实体类别的不均衡和单个样本内实体数量过少。针对这些问题,提出了数据增强方法,如实体替换,以及采用源自CV领域的focal loss和Dice loss损失函数来改进模型训练。这些策略旨在提高少数类别实体的识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这几天在面一些研究院,其中一位面试官提到NER中实体类别不均衡的处理方法,当时从比赛trick上给出了回答,这里做一个总结。

问题描述:

NER中样本不均衡,作者从以下两个角度描述这个问题。

1. 实体类别不均衡。以实体类别地点、人物、时间三类实体为例,训练集中人物出现100000个、地点1000个、时间400个。
2. 单个样本中实体过少,导致"O"标签与实体标签(“B”、“I”)分布不均衡。
知乎上有一个相关问题:nlp序列标注任务如何处理类别极度不平衡问题? - 知乎 https://www.zhihu.com/question/340333687

解决方案:

  • 数据增强

常规的欠采样和过采样方法在序列标注任务上,稍微思考一下就是不靠谱的。在这个任务上如果直接在样本上操作,不能欠采样,导致样本多的类别也会表现不好。

  1. 少实体类别替换,丰富少数实体类别样本。具体讲,将少数实体类别的实体随机替换为同类别的其他实体。属于比赛的一个trick吧,直观来看一个实体的范围相对单个样本较短,应该产生过多的影响,但经过实际验证会一定的提升(但是不能保证)。
  2. 除第一点直接替换文本之外,还有基于词向量的同义词替换、单复数替换、代词替换等。
  • 损失函数

以下两个损失函数都是从CV领域借鉴来的。

  1. focal loss,由何铠明在论文《Focal Loss for Dense Object Detection》提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值