摘 要 介绍了应用最小二乘法对T-S结论参数进行粗略辨识,确定参数的大致范围,再应用遗传算法对前提参数和结论参数同时优化的参数辨识方法
对非线性函数进行逼近实验,给出了用MATLAB编程进行仿真的具体实现方法,结果证明该方法的可行性和有效性
关键词 最小二乘法;参数辨识;遗传算法 0 引言 对T-S模糊系统参数辨识的过程大致分为结构辨识和参数辨识,而参数辨识则是整个系统辨识的关键所在
遗传算法以其在解空间内进行高效启发式搜索,寻优速度快,不易陷入局部最优解等优点成为近来应用较多的优化方法
将遗传算法用于解决T-S模糊模型的参数辨识问题,在应用最小二乘法进行粗略辨识的前提下,用遗传算法对结论参数进行寻优,用MATLAB进行仿真,取得了较好的效果
1 用最小二乘法对T-S模糊模型参数的初步辨识 T-S模糊模型辨识的过程一般分为以下几个阶段:前提结构辨识;前提参数辨识;结论结构辨识;结论参数辨识,直到模型满足要求为止
结构辨识的方法,在此不再详细说明,只对结论参数辨识问题展开讨论
在确定了前提结构和结论结构之后,对模糊模型的结论参数进行粗略的辨识,以确定遗传算法寻优的范围
在众多的参数辨识方法中,最小二乘法是最基本的一种,Gauss于1795年就用最小二乘法,由观测结果估算了行星的运行轨道
此后,这种方法被广泛应用,并根据实际问题提出了许多改进的最小二乘法,如正交最小二乘法,广义最小二乘法,增广最小二乘法等
这里所用的是线性最小二乘法,将前提结构划分的各个范围中的输入输出数据拟合为一次多项式函数