python电影爬虫背景介绍_Python爬虫入门教程01之爬取豆瓣Top电影

本文介绍了如何使用Python爬虫爬取豆瓣Top250电影的信息,包括电影名字、导演、主演、年份、国家、类型、评分和评价人数。通过requests发送请求,parsel进行数据解析,最后将数据保存到CSV文件中。
摘要由CSDN通过智能技术生成

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

基本开发环境

Python 3.6

Pycharm

相关模块的使用

requests

parsel

csv

安装Python并添加到环境变量,pip安装需要的相关模块即可。

爬虫基本思路

db78ec212b305875e17e185fb8ed0cf4.png

一、明确需求

爬取豆瓣Top250排行电影信息

电影名字

导演、主演

年份、国家、类型

评分、评价人数

电影简介

e253eef7d324f2489f268dbdc1a9cbf6.png

二、发送请求

Python中的大量开源的模块使得编码变的特别简单,我们写爬虫第一个要了解的模块就是requests。

018ba2dee7e5ef0952f95db1c5c059e4.png

b83cdcfa93ff04c10fbf114e885bdb8b.png

请求url地址,使用get请求,添加headers请求头,模拟浏览器请求,网页会给你返回response对象

# 模拟浏览器发送请求

import requests

url = 'https://movie.douban.com/top250'

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'

}

response = requests.get(url=url, headers=headers)

print(response)

9ff378243f55bbc2d74f0331f89699b9.png

200是状态码,表示请求成功

2xx (成功)

3xx (重定向)

4xx(请求错误)

5xx(服务器错误)

常见状态码

200 - 服务器成功返回网页,客户端请求已成功。

302 - 对象临时移动。服务器目前从不同位置的网页响应请求,但请求者应继续使用原有位置来进行以后的请求。

304 - 属于重定向。自上次请求后,请求的网页未修改过。服务器返回此响应时,不会返回网页内容。

401 - 未授权。请求要求身份验证。 对于需要登录的网页,服务器可能返回此响应。

404 - 未找到。服务器找不到请求的网页。

503 (服务不可用) 服务器目前无法使用(由于超载或停机维护)。

通常,这只是暂时状态。

三、获取数据

import requests

url = 'https://movie.douban.com/top250'

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'

}

response = requests.get(url=url, headers=headers)

print(response.text)

4874f7da49369a5353c0ae8128de1f70.png

requests.get(url=url, headers=headers) 请求网页返回的是response对象

response.text: 获取网页文本数据

response.json: 获取网页json数据

这两个是用的最多的,当然还有其他的

apparent_encoding cookies history

iter_lines okclose

elapsed is_permanent_redirect json

raise_for_status connection encoding

is_redirect links raw

content headers iter_content

next reasonurl

四、解析数据

常用解析数据方法: 正则表达式、css选择器、xpath、lxml…

常用解析模块:bs4、parsel…

我们使用的是 parsel 无论是在之前的文章,还是说之后的爬虫系列文章,我都会使用 parsel 这个解析库,无它就是觉得它比bs4香。

parsel 是第三方模块,pip install parsel 安装即可

parsel 可以使用 css、xpath、re解析方法

8f229157c2f307ff65bc338fc1b326a0.png

所有的电影信息都包含在 li 标签当中。

# 把 response.text 文本数据转换成 selector 对象

selector = parsel.Selector(response.text)

# 获取所有li标签

lis = selector.css('.grid_view li')

# 遍历出每个li标签内容

for li in lis:

# 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有

title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串

movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表

star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')

movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']

movie_time = movie_info[0] # 电影上映时间

movie_country = movie_info[1] # 哪个国家的电影

movie_type = movie_info[2] # 什么类型的电影

rating_num = li.css('.rating_num::text').get() # 电影评分

people = li.css('.star span:nth-child(4)::text').get() # 评价人数

summary = li.css('.inq::text').get() # 一句话概述

dit = {

'电影名字': title,

'参演人员': star,

'上映时间': movie_time,

'拍摄国家': movie_country,

'电影类型': movie_type,

'电影评分': rating_num,

'评价人数': people,

'电影概述': summary,

}

# pprint 格式化输出模块

pprint.pprint(dit)

47e4f098933879e389b13ddccddd230f.png

以上的知识点使用到了

parsel 解析模块的方法

for 循环

css 选择器

字典的创建

列表取值

字符串的方法:分割、替换等

pprint 格式化输出模块

所以扎实基础是很有必要的。不然你连代码都不知道为什么要这样写。

五、保存数据(数据持久化)

常用的保存数据方法 with open

像豆瓣电影信息这样的数据,保存到Excel表格里面会更好。

所以需要使用到 csv 模块

# csv模块保存数据到Excel

f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',

'电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

1a185f4128686132d7ab1da42c032daa.png

073edcf4e294f6cf1acd2fe689ca88a6.png

这就是爬取了数据保存到本地了。这只是一页的数据,爬取数据肯定不只是爬取一页数据。想要实现多页数据爬取,就要分析网页数据的url地址变化规律。

cdcfcd403133dd8b12d5d49d7a34004f.png

可以清楚看到每页url地址是 25 递增的,使用for循环实现翻页操作

for page in range(0, 251, 25):

url = f'https://movie.douban.com/top250?start={page}&filter='

完整实现代码

""""""

import pprint

import requests

import parsel

import csv

'''

1、明确需求:

爬取豆瓣Top250排行电影信息

电影名字

导演、主演

年份、国家、类型

评分、评价人数

电影简介

'''

# csv模块保存数据到Excel

f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',

'电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

# 模拟浏览器发送请求

for page in range(0, 251, 25):

url = f'https://movie.douban.com/top250?start={page}&filter='

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'

}

response = requests.get(url=url, headers=headers)

# 把 response.text 文本数据转换成 selector 对象

selector = parsel.Selector(response.text)

# 获取所有li标签

lis = selector.css('.grid_view li')

# 遍历出每个li标签内容

for li in lis:

# 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有

title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串

movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表

star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')

movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']

movie_time = movie_info[0] # 电影上映时间

movie_country = movie_info[1] # 哪个国家的电影

movie_type = movie_info[2] # 什么类型的电影

rating_num = li.css('.rating_num::text').get() # 电影评分

people = li.css('.star span:nth-child(4)::text').get() # 评价人数

summary = li.css('.inq::text').get() # 一句话概述

dit = {

'电影名字': title,

'参演人员': star,

'上映时间': movie_time,

'拍摄国家': movie_country,

'电影类型': movie_type,

'电影评分': rating_num,

'评价人数': people,

'电影概述': summary,

}

pprint.pprint(dit)

csv_writer.writerow(dit)

实现效果

bd85ac9c777d04e5a38a88a25d3d2435.png

a9aa02ac0f06c3e2847fff09a11c4063.png

到此这篇关于Python爬虫入门教程01之爬取豆瓣Top电影的文章就介绍到这了,更多相关Python爬取豆瓣Top电影内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

本文标题: Python爬虫入门教程01之爬取豆瓣Top电影

本文地址: http://www.cppcns.com/jiaoben/python/374887.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值