pandas用均值填充nan_pandas 使用均值填充缺失值列的小技巧分享

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:

for column in list(df.columns[df.isnull().sum() > 0]):

mean_val = df[column].mean()

df[column].fillna(mean_val, inplace=True)

# -------代码分解-------

# 判断哪些列有缺失值,得到series对象

df.isnull().sum() > 0

# output

contributors True

coordinates True

created_at False

display_text_range False

entities False

extended_entities True

favorite_count False

favorited False

full_text False

geo True

id False

id_str False

...

# 根据上一步结果,筛选需要填充的列

df.columns[df.isnull().sum() > 0]

# output

Index(['contributors', 'coordinates', 'extended_entities', 'geo',

'in_reply_to_screen_name', 'in_reply_to_status_id',

'in_reply_to_status_id_str', 'in_reply_to_user_id',

'in_reply_to_user_id_str', 'place', 'possibly_sensitive',

'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id',

'quoted_status_id_str', 'retweeted_status'],

dtype='object')

以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持龙方网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值