keras指定gpu_keras-gpu的安装与配置

本文介绍了如何配置和使用GPU进行深度学习,包括更新显卡驱动,安装CUDA、cuDNN和GPU版本的TensorFlow与Keras,以及如何指定和管理GPU设备。通过设置CUDA_VISIBLE_DEVICES环境变量,可以切换GPU使用或限制GPU内存占用。
摘要由CSDN通过智能技术生成

gpu擅长处理计算密集型任务,可并行运作。在深度学习的训练过程中,包含了大量重复性的计算,利用 gpu 的特性可显著提高训练的效率。

一、更新显卡驱动程序

先升级显卡驱动确保后面不会因为显卡驱动版本低这个问题被卡住。

二、安装gpu版本的tensorflow和keras

1、安装CUDA、cuDNN、tensorflow-gpu

NVIDIA CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。

NVIDIA cuDNN是用于深度神经网络的gpu加速库,可以集成到更高级别的机器学习框架中,如Tensorflow、caffe。

CUDA与cuDNN的关系

CUDA可以看作是一个工作台,但是这个工作台买来的时候,并没有送工具。那工具在哪呢?工具就是cuDNN,有了它才能在GPU上完成深度学习的计算。所以说,想要在CUDA上运行深度神经网络,就要安装cuDNN。

tensorflow-gpu是tensorflow的gpu版本,但是它必须通过 cuda 和 cudnn 来调用电脑的 gpu。

使用以下方法可以一次性安装CUDA、cuDNN、tensorflow-gpu

conda install tensorflow-gpu

2、安装keras-gpu

conda install keras-gpu

三、指定gpu设备

1、显示所有可用设备

from tensorflow.python.client import device_lib

print(device_lib.list_local_devices())

2、指定一个不存在的gpu(切换回cpu)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值