matlab quantizer,Deep Learning Toolbox

DeepLearningToolbox提供了一个框架,支持使用CNN和LSTM进行图像、时序和文本数据的分类与回归。它允许构建包括GAN和Siamese网络在内的自定义网络,并通过DeepNetworkDesigner进行图形化设计。实验管理器便于多实验管理和结果分析。此外,支持模型转换、预训练模型的迁移学习,以及利用ParallelComputingToolbox加速学习过程。
摘要由CSDN通过智能技术生成

Deep Learning Toolbox™ には、アルゴリズム、事前学習済みモデル、およびアプリを使用したディープ ニューラル ネットワークの設計と実装のためのフレームワークが用意されています。畳み込みニューラル ネットワーク (ConvNets、CNN) および長期短期記憶 (LSTM) ネットワークを使用して、画像、時系列、およびテキストデータの分類および回帰を行えます。自動微分、カスタムの学習ループ、重み共有を使用して、敵対的生成ネットワーク (GAN) や Siamese ネットワークのようなネットワーク アーキテクチャを構築できます。Deep Network Designer アプリを使用すると、ネットワークをグラフィカルに設計、分析し、学習させることができます。実験マネージャーアプリでは、複数のディープラーニング実験の管理、学習パラメーターの追跡、結果の解析、およびさまざまな実験のコードの比較を行うことができます。層の活性化状態を可視化し、学習進行状況をグラフィックで監視することができます。

ONNX 形式を使用して TensorFlow™ や PyTorch とモデルを交換したり、TensorFlow-Keras や Caffe からモデルをインポートできます。ツールボックスは、DarkNet-53、ResNet-50、NASNet、SqueezeNet やその他多くの事前学習済みのモデルを用いた転移学習をサポートします。

Parallel Computing Toolbox™ を使用して、単一のまたは複数の GPU を持つワークステーションで学習速度を上げたり、MATLAB Parallel Server™を使用して、NVIDIA® GPU Cloud および Amazon EC2® GPU インスタンスを含むクラスターやクラウドにスケールアップすることができます。

Deep Learning Toolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。 对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。 了解深度学习工具箱的基础知识 深度学习图像 从头开始训练卷积神经网络或使用预训练网络快速学习新任务 使用时间序列,序列和文本进行深度学习 为时间序列分类,回归和预测任务创建和训练网络 深度学习调整和可视化 绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能 并行和云中的深度学习 通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络 深度学习应用 通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程 深度学习导入,导出和自定义 导入和导出网络,定义自定义深度学习图层以及自定义数据存储 深度学习代码生成 生成MATLAB代码或CUDA ®和C ++代码和部署深学习网络 函数逼近和聚类 使用浅层神经网络执行回归,分类和聚类 时间序列和控制系统 基于浅网络的模型非线性动态系统; 使用顺序数据进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值