Deep Learning Toolbox™ には、アルゴリズム、事前学習済みモデル、およびアプリを使用したディープ ニューラル ネットワークの設計と実装のためのフレームワークが用意されています。畳み込みニューラル ネットワーク (ConvNets、CNN) および長期短期記憶 (LSTM) ネットワークを使用して、画像、時系列、およびテキストデータの分類および回帰を行えます。自動微分、カスタムの学習ループ、重み共有を使用して、敵対的生成ネットワーク (GAN) や Siamese ネットワークのようなネットワーク アーキテクチャを構築できます。Deep Network Designer アプリを使用すると、ネットワークをグラフィカルに設計、分析し、学習させることができます。実験マネージャーアプリでは、複数のディープラーニング実験の管理、学習パラメーターの追跡、結果の解析、およびさまざまな実験のコードの比較を行うことができます。層の活性化状態を可視化し、学習進行状況をグラフィックで監視することができます。
ONNX 形式を使用して TensorFlow™ や PyTorch とモデルを交換したり、TensorFlow-Keras や Caffe からモデルをインポートできます。ツールボックスは、DarkNet-53、ResNet-50、NASNet、SqueezeNet やその他多くの事前学習済みのモデルを用いた転移学習をサポートします。
Parallel Computing Toolbox™ を使用して、単一のまたは複数の GPU を持つワークステーションで学習速度を上げたり、MATLAB Parallel Server™を使用して、NVIDIA® GPU Cloud および Amazon EC2® GPU インスタンスを含むクラスターやクラウドにスケールアップすることができます。