Gram 矩阵及其主要性质

文章目录

Gram 矩阵

假设 A A A 是一个 m × n m\times n m×n 阶矩阵,

  1. 列向量 Gram 矩阵
    A A A 由列向量 α i \mathbf{\alpha}_i αi 表示, 即
    A = [ α 1 α 2 ⋯ α n ] A=\begin{bmatrix}\mathbf{\alpha}_1 & \mathbf{\alpha}_2 &\cdots & \mathbf{\alpha}_n \end{bmatrix} A=[α1α2αn]

G =   A T A = [ α 1 T α 2 T ⋮ α n T ] [ α 1 α 2 ⋯ α n ] = [ α 1 T α 1 α 1 T α 2 ⋯ α 1 T α n α 2 T α 1 α 2 T α 2 ⋯ α 2 T α n ⋮ ⋮ ⋮ α n T α 1 α n T α 2 ⋯ α n T α n ] \begin{aligned} G &= \, A^{\mathsf T}A \\[3pt] &= \begin{bmatrix} \mathbf{\alpha}_1^{\mathsf T} \\ \mathbf{\alpha}_2^{\mathsf T} \\ \vdots \\ \mathbf{\alpha}_n^{\mathsf T} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}_1 & \mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_n \end{bmatrix} \\[3pt] & = \begin{bmatrix} \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_n \\ \mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_2 & \cdots &\mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_n \end{bmatrix} \end{aligned} G=ATA=α1Tα2TαnT[α1α2αn]=α1Tα1α2Tα1αnTα1α1Tα2α2Tα2αnTα2α1Tαnα2TαnαnTαn

  1. 行向量 Gram 矩阵
    A A A 由行向量 β i T \mathbf{\beta}_i^{\mathsf T} βiT 表示, 即
    A = [ β 1 T β 2 T ⋮ β m T ] A=\begin{bmatrix}\mathbf{\beta}_1^{\mathsf T} \\ \mathbf{\beta}_2^{\mathsf T} \\ \vdots \\ \mathbf{\beta}_m^{\mathsf T} \end{bmatrix} A=β1Tβ2TβmT

G =   A A T = [ β 1 T β 2 T ⋮ β m T ] [ β 1 β 2 ⋯ β m ] = [ β 1 T β 1 β 1 T β 2 ⋯ β 1 T β m β 2 T β 1 β 2 T β 2 ⋯ β 2 T β m ⋮ ⋮ ⋮ β m T β 1 β m T β 2 ⋯ β m T β m ] \begin{aligned} G &= \, AA^{\mathsf T} \\[3pt] &= \begin{bmatrix}\mathbf{\beta}_1^{\mathsf T} \\ \mathbf{\beta}_2^{\mathsf T} \\ \vdots \\ \mathbf{\beta}_m^{\mathsf T} \end{bmatrix} \begin{bmatrix} \mathbf{\beta}_1 & \mathbf{\beta}_2 & \cdots & \mathbf{\beta}_m \end{bmatrix} \\[3pt] & = \begin{bmatrix} \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_2 & \cdots & \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_m \\ \mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_2 & \cdots &\mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_m \\ \vdots & \vdots & & \vdots \\ \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_2 & \cdots & \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_m \end{bmatrix} \end{aligned} G=AAT=β1Tβ2TβmT[β1β2βm]=β1Tβ1β2Tβ1βmTβ1β1Tβ2β2Tβ2βmTβ2β1Tβmβ2TβmβmTβm

6 大性质

下面只考虑列向量 Gram 矩阵

(1) G =   A T A G = \, A^{\mathsf T}A G=ATA 是对称矩阵

G T =   ( A T A ) T =   A T A = G G^{\mathsf T } = \, (A^{\mathsf T}A)^{\mathsf T} = \, A^{\mathsf T}A = G GT=(ATA)T=ATA=G


(2) 对于实矩阵 A A A r a n k ( A T A ) = r a n k ( A ) \mathrm{rank} (A^{\mathsf T}A) = \mathrm{rank} (A) rank(ATA)=rank(A)

证明 { A x = 0 A T A x = 0 \begin{cases} A\mathsf{x} = 0 \\ A^{\mathsf T}A\mathbf{x} = 0 \end{cases} {Ax=0ATAx=0 同解即可.

证明过程详见经典例题(第3小问)

(3) 若 A T A = 0 A^{\mathsf T}A=0 ATA=0, 则 A = 0 A = 0 A=0

由上面性质
r a n k ( A T A ) = r a n k ( A ) = r a n k   ( 0 ) = 0 \begin{aligned} \mathrm{rank} (A^{\mathsf T}A) &= \mathrm{rank} (A) \\ &= \mathrm{rank} \ (0) = 0 \end{aligned} rank(ATA)=rank(A)=rank (0)=0


(4) 对于实矩阵 A A A, 则 A T A A^{\mathsf T}A ATA 是半正定矩阵
x T A T A x = ( A x ) T A x ≥ 0 \mathbf{x}^{\mathsf T}A^{\mathsf T}A\mathbf{x} = (A\mathbf{x})^{\mathsf T}A\mathbf{x} \geq 0 xTATAx=(Ax)TAx0


(5) 对于任意 n n n 阶实对称半正定矩阵 M M M, 存在矩阵 A A A 使得 M = A T A M=A^{\mathsf T}A M=ATA 成立.

因为矩阵 M M M 实对称, 所以 M M M 可以正交对角化, 即 M = Q Λ Q T M = Q\Lambda Q^{\mathsf T} M=QΛQT 又因为矩阵 M M M 半正定, 所以其特征值 $\lambda_i \geq 0 $, 所以可记 Λ 1 / 2 = d i a g ( λ 1 , … , λ n ) \Lambda^{1/2} = \mathrm{diag} ( \sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) Λ1/2=diag(λ1 ,,λn )KaTeX parse error: Expected 'EOF', got '}' at position 29: …2}Q^\{\mathsf T}̲ 则可得
M = Q Λ Q T = ( Λ 1 / 2 Q T ) T Λ 1 / 2 Q T = A T A \begin{aligned} M &= Q\Lambda Q^{\mathsf T} \\ &= (\Lambda^{1/2}Q^{\mathsf T})^{\mathsf T}\Lambda^{1/2}Q^{\mathsf T} \\ &= A^{\mathsf T}A \end{aligned} M=QΛQT=(Λ1/2QT)TΛ1/2QT=ATA


(6) 若 A = [ α 1 α 2 ⋯ α n ] A=\begin{bmatrix}\mathbf{\alpha}_1 & \mathbf{\alpha}_2 &\cdots & \mathbf{\alpha}_n \end{bmatrix} A=[α1α2αn] 列满秩, 则 A T A A^{\mathsf T}A ATA 正定

  • 由性质 (2), 知 r a n k ( A T A ) = r a n k ( A ) = n \mathrm{rank} (A^{\mathsf T}A) = \mathrm{rank} (A) = n rank(ATA)=rank(A)=n
  • 因为 A x = 0 A\mathbf{x}=0 Ax=0 只有零解, 结合性质 (4), 对于非零 x ∈ R n \mathbf{x}\in \mathbb{R}^n xRn
    x T A T A x = ( A x ) T A x > 0 \mathbf{x}^{\mathsf T}A^{\mathsf T}A\mathbf{x} = (A\mathbf{x})^{\mathsf T}A\mathbf{x} > 0 xTATAx=(Ax)TAx>0

原文链接
[1] matnoble.me/posts/gram
[2] 关注我吧

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值