python中的predict_python – 如何从scikit-learn中的predict_proba中使用cross_val_predict获取类标签...

在使用scikit-learn的RandomForestClassifier进行3倍交叉验证时,通过cross_val_predict获取预测概率矩阵。问题在于如何根据classes_属性匹配概率矩阵中的列。解决方案是,由于np.unique在构造classes_属性时返回排序后的唯一值,因此概率矩阵的列顺序与classes_一致。
摘要由CSDN通过智能技术生成

我需要使用3倍交叉验证训练Random Forest classifier.对于每个样本,我需要在它恰好位于测试集中时检索预测概率.

我正在使用scikit-learn版本0.18.dev0.

此新版本添加了使用方法cross_val_predict()和附加参数方法来定义估计器需要哪种预测的功能.

在我的情况下,我想使用predict_proba()方法,它返回多类方案中每个类的概率.

但是,当我运行该方法时,我得到预测概率矩阵,其中每行代表一个样本,每列代表特定类的预测概率.

问题是该方法没有指出哪个类对应于每列.

我需要的值与属性classes_中返回的相同(在我的情况下使用RandomForestClassifier)定义为:

classes_ : array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

这是predict_proba()所需要的,因为在其文档中写道:

The order of the classes corresponds to that in the attribute classes_.

最小的例子如下:

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_val_predict

clf = RandomForestClassifier()

X = np.random.randn(10, 10)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值