1、二进位计数制仅用两个数码0和1,这样就能大大提高机器的抗干扰能力,提高可靠性。利用这些截然不同的状态来代表数字,是很容易实现的。两种截然不同的状态不单有量上的差别,而且是有质上的不同。
2、二进位计数制的四则运算规则十分简单。四则运算最后都可归结为加法运算和移位,电子计算机中的运算器线路也变得十分简单了。不仅如此,线路简化了,速度也就可以提高。
3、在电子计算机中采用二进制表示数可以节省设备。由于二进制中只用二个符号 “ 0” 和“1”,因而可用布尔代数来分析和综合机器中的逻辑线路。 这为设计电子计算机线路提供了一个很有用的工具。
4、二进制的符号“1”和“0”恰好与逻辑运算中的“对”(true)与“错”(false)对应,便于计算机进行逻辑运算。
扩展资料:
二进制的基本特性
1、如果一个二进制数(整型)数的第零位的值是1,那么这个数就是奇数;而如果该位是0,那么这个数就是偶数。
2、如果一个二进制数的低端n位都是零,那么这个数可以被2n整除。
3、如果一个二进制数的第n位是一,而其他各位都是零,那么这个数等于2^n。
4、如果一个二进制数的第零位到第n - 1位都是1,而且其他各位都是0,那么这个数等于2^n - 1。
5、将一个二进制数的所有位左移移位的结果是将该数乘以二。
6、将一个无符号二进制数的所有位右移一位的结果等效于该数除以二(这对有符号数不适用)。余数会被下舍入。
7、将两个n位的二进制数相乘可能会需要2*n位来保存结果。
8、将两个n位的二进制数相加或者相减绝不会需要多于n 1位来保存结果。
9、将一个二进制数的所有位取反(就是将所有的一改为零,所有的零改为一)等效于将该数取负(改变符号)再将结果减一。
10、将任意给定个数的位表示的最大无符号二进制数加一的结果永远是零。
11、零递减(减一)的结果永远是某个给定个数的位表示的最大无符号二进制数。
12、n位可以表示2n个不同的组合。