c# opencv 轮廓检测_使用OpenCV和Python构建自己的车辆检测模型

本文介绍了如何使用OpenCV和Python构建一个车辆检测系统,涵盖了帧差分、图像阈值、轮廓检测和图像膨胀等技术,以及如何在特定区域内识别车辆。
摘要由CSDN通过智能技术生成

介绍

我喜欢智慧城市的理念。自动智能能源系统、电网、一键接入端口的想法等等。这是一个令人着迷的概念!老实说,这是一个数据科学家的梦想,我很高兴世界上很多城市都在朝着更智能的方向发展。

智能城市的核心组成部分之一是自动交通管理。这不禁让我思考——我能用我的数据科学知识来建立一个车辆检测模型,在智能交通管理中发挥作用吗?

想想看,如果你能在红绿灯摄像头中集成车辆检测系统,你可以轻松地同时跟踪许多有用的东西:

  • 白天交通路口有多少辆车?
  • 什么时候交通堵塞?
  • 什么样的车辆(重型车辆、汽车等)正在通过交叉路口?
  • 有没有办法优化交通,并通过不同的街道进行分配?

还有很多例子就不一一列举。应用程序是无止境的!

我们人类可以很容易地在一瞬间从复杂的场景中检测和识别出物体。然而,将这种思维过程转化为机器的思维,需要我们学习使用计算机视觉算法进行目标检测。

因此在本文中,我们将建立一个自动车辆检测器和计数器模型。以下视频是你可以期待的体验:

https://youtu.be/C_iZ2yivskE

注意:还不懂深度学习和计算机视觉的新概念?以下是两门热门课程,可开启你的深度学习之旅:

  • 深度学习基础(https://courses.analyticsvidhya.com/courses/fundamentals-of-deep-learning?utm_source=blog&utm_medium=vehicle-detection-opencv-python)
  • 利用深度学习的计算机视觉(https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2?utm_source=blog&utm_medium=vehicle-detection-opencv-python)

目录

  1. 视频中运动目标检测的思想
  2. 视频中目标检测的真实世界用例
  3. 视频目标检测的基本概念 帧差分 图像阈值 检测轮廓 图像膨胀
  4. 利用OpenCV构建车辆检测系统

视频中运动目标检测的思想

目标检测是计算机视觉中一个引人入胜的领域。当我们处理视频数据时,它达到了一个全新的水平,复杂性上升了一个等级,但也有回报!

我们可以使用目标检测算法来执行超级有用的高价值任务,如监视、交通管理、打击犯罪等。下面的GIF图演示了这个想法:

58b35ee2e976d1136afb636de4e884b7.gif

在目标检测中,我们可以执行许多子任务,例如计算目标数量、查找目标的相对大小或查找目标之间的相对距离。这些子任务都很重要,因为它们有助于解决一些最棘手的现实问题。

如果你希望从头开始学习目标检测,我建议你使用以下教程:

  • 逐步介绍基本的目标检测算法(https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=vehicle-detection-opencv-python)
  • 利用SlimYOLOv3进行实时目标检测(https://www.analyticsvidhya.com/blog/2019/08/introduction-slimyolov3-real-time-object-detection/?utm_source=blog&utm_medium=vehicle-detection-opencv-python)
  • 其他目标检测物品和资源(https://www.analyticsvidhya.com/blog/tag/object-detection/?utm_source=blog&utm_medium=vehicle-detection-opencv-python)

让我们看看一些令人兴奋的现实世界中的目标检测用例。

视频中目标检测的真实世界用例

如今,视频目标检测正被广泛应用于各个行业。使用案例从视频监控到体育广播,再到机器人导航。

好消息是,在未来的视频目标检测和跟踪用例中,可能性是无穷的。这里我列出了一些有趣的应用程序:

  • 人群计数(https://www.analyticsvidhya.com/blog/2019/02/building-crowd-counting-model-python/)
  • 车牌检测与识别
  • 运动中的球跟踪(https://www.analyticsvidhya.com/blog/2020/03/ball-tracking-cricket-computer-vision/)
  • 机器人学
  • 交通管理(我们将在本文中看到这个想法)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值