上机
7
:文件操作
一、问题:
古人计算
pi
(
3.1415926535 89793 23846
„„),一般是用割圆法。即用圆的内接或外切正多边
形来逼近圆的周长。大约公元前
1200
年,中国人计算到小数点后
1
位;
Archimedes
在公元前
250
年
用正
96
边形得到
pi
小数点后
3
位的精度;公元
263
年,刘徽用正
3072
边形计算到小数点后
5
位
;
公元
480
年,祖冲之计算到小数点后
7
位;
Ludolph Van Ceulen
在
1609
年用正
2
62
边形得到了
35
位
精度;
1706
年,
John
Machin
计算到小数点后
100
位。
1874
年,
William Shanks
计算到小数点后
707
位
(
527
位正确)
。
这种基于几何的算法计算量大,
速度慢,
吃力不讨好。
1973
年
Guilloud & Bouyer
用
CDC 7600
计算机计算到
1,001,250
位;
1989
年
Kanada & Tamurar
用
HITACHI S-820/80
计算机计
算到
1,073,741,799
位;
1999
年
Takahashi & Kanada
用
HITACHI SR8000
计算机计算到
206,158,430,000
位;
pi
的最新计算纪录由两位日本人
Daisuke Takahashi
和
Yasumasa Kanada
所创造。他们在日本
东京大学的
IT
中心,
以
Gauss-Legendre
算法编写程序,
利用一台每秒可执行一万亿次浮点运算的超
级计算机,从日本时间
1999
年
9
月
18
日
19:00:52
起,计算了
37
小时
21
分
04
秒,得到了
pi
的
206,158,430,208(3*2
36
)
位十进制精度,之后和他们于
1999
年
6
月
27
日以
Borwein
四次迭代式计算
了
46
小时得到的结果相比,
发现最后
45
位小数有差异,
因此他们取小数点后
206,158,430,000
位的
p
值为本次计算结果。这一结果打破了他们于
1999
年
4
月创造的
68,719,470,000
位的世界纪录。随
着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算
pi
的公式。
Machin
公式