瑞利分布概率密度函数推导_常用概率分布总结(1)

本文是对常见概率分布的总结,包括退化分布、伯努利分布、多项分布等多个重要概念,详细介绍了每个分布的定义、密度函数、期望、方差和特征函数,并给出了R语言中相关函数的使用示例。通过对各种分布的理解,有助于在实际问题中灵活应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老是记不住各种分布及其意义,每次用时,回查各个课本资料也很麻烦,一些分布的重要性质也是各处散布,经常找不到,故这里做个总结,当作个资料卡用。

内容有各种常见概率分布,一般会写含义、密度函数形式、期望、方差、特征函数,其它性质感觉重要就添加(有趣但感觉没什么用的不会添加)。

先介绍下在R中的使用随机数,密度函数,分布函数,分位函数的命令,使用正态分布为示例。以下不做说明均是使用 R 语言。

  • 随机数

从服从某种分布的总体中抽出样本

> rnorm(5)
[1]  0.2858567 -0.7578348  0.6322224  0.6289619 -0.6743083
  • 概率密度函数(probability density function pdf)

分布的概率密度函数值

。有时直接称密度函数。
> dnorm(0)
[1] 0.3989423
> dnorm(3.2)
[1] 0.002384088

使用这个函数就可以画出概率密度函数图,

x = seq(-5,5,by=0.01)
y = dnorm(x)
plot(x,y)

b1916f5d763519c189f5473ada6d2f20.png
  • 累积分布函数(cumulative distribution function cdf)

含义为对pdf的积分函数

。有时直接称分布函数。
> pnorm(0)
[1] 0.5
> pnorm(1.3)
[1] 0.9031995
> pnorm(3.6)
[1] 0.9998409
  • 分位函数

cdf的反函数,从pdf理解更简单,pdf下方总的面积为1,q(0.9)表示从

到值q(0.9)处,累积概率为0.9。显然这个函数一个用处是计算否定域
> qnorm(0.5)
[1] 0
> qnorm(0.9031)
[1] 1.29942

> qnorm(0.025)    #显著性水平为0.05,拒绝域(-1.95,1.95)
[1] -1.959964

用随机数理解,如果随机抽取,90%的数在

到值q(0.9)之间,
> qnorm(0.9)
[1] 1.281552

> sum(rnorm(1e5)<1.281552)/1e5
[1] 0.90048

1.退化分布;2.伯努利分布;3.Categorical 分布;4.二项分布;5.多项分布;6.中餐馆分布

7.泊松分布;8.几何分布;9.超几何分布;10.负二项分布(又称巴斯卡分布);11.正态分布;

12.均匀分布;13.指数分布;14.卡方分布;15.t分布;16.F分布;17.柯西分布;

18.Gamma分布;19.beta分布;20.对数正态分布;21.Weibull分布;22.逻辑分布;23.狄利克雷分布;

1.退化分布(degenerate distribution)

[1]基本

  • 密度函数

随机变量值只取常数

。事实上它并不随机,但把它看作随机变量的退化情况,因此称为退化分布。
  • 期望

  • 方差

  • 特征函数

[2]重要性质

2.伯努利分布

[1]基本

随机变量只取0或1,表示事件不发生或发生,也可以说是事件发生0次或发生1次

  • 密度函数

为随机变量,
为该分布的参数。
  • 期望

  • 方差

  • 特征函数

[2]重要性质

3.Categorical分布

[1]基本

伯努利分布为一次只有两种可能结果{0,1}的试验,Categorical 分布可以有多种可能{1,2,...,K}。

  • 密度函数

d79c8da3a7fc7f898809272480c4ca62.png
  • 期望
  • 方差
  • 特征函数

[2]重要性质

4.二项分布

[1]基本

也称为

重伯努利分布,某伯努利事件成功的概率为
,重复进行
次伯努利事件,成功的次数为
的概率。随机变量为
,可取
  • 密度函数

画个密度图看看,

k = 0:15      #随机变量
p = dbinom(k,15,0.7)   #15重伯努利,成功概率取0.7
plot(k,p)

4a4610b1723a85d94e83381571b6ec6f.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.几个二项式系数的关系式

5a1448523f5b0aaeab5a3a69fadd0978.png

1fd8d8620c9f32e66895c4ed8d44b75d.png

5b474b114a18ce613216ae3c2ce948e4.png

e2e2e2402cd1e09b668432896e994896.png

2.二项分在

时近似为正态分布
k = 0:100     
p = dbinom(k,100,0.4)   
plot(k,p)

1324c68a8567ff64d92ffacfede0d3f5.png

5.多项分布(Multinomial Distribution)

[1]基本

也可以进行多次Categorical 分布试验,Categorical 分布的事件用

表示,对应的概率为
,进行
次试验(每次都会发生
中的一个)各个事件发生的次数为
,注意有
,概率为,
  • 密度函数

  • 期望
  • 方差
  • 特征函数

[2]重要性质

1.从离散分布抽iid的样本,样本发生的概率都可以看作是多项分布。多项分布在推导皮尔逊卡方定理、列联表的卡方检验都有用到。是一个重要且很有用的分布。

6.中餐馆分布(Chinese restaurant process CRP )

这是本专栏中“狄利克雷过程和中餐馆过程”的部分内容,里面同时也说明了该分布的用处。

多次伯努利分布(每次试验只有两种结果)得到二项分布,多次Categorical 分布(每次试验有K种结果)得到多项分布。进一步考虑。如果每次试验有无穷种可能结果,进行多次试验又会如何。

[1]基本

把过程想象成客人进入餐馆就坐的过程,餐馆中有无穷个桌子。每一次试验相当于一个客人选择一个桌子坐下。

122f2f93b9713fa279ac0b39d58df04f.png

圆圈表示餐桌,数字表示客人,1号客人选择了第一个餐桌,4号客人选择了第3个餐桌。

看看上图发生的概率,

首先所有桌都没人,1号进入直接坐在1桌;

2号进入,分别以概率

坐在1桌和一个新的空桌,结果是坐在了1桌;

3号进入,分别以概率

坐在1桌和一个新空桌,结果坐在了一个新空桌2桌;

...

8号进入,分别以概率

分别为进入第1,2,3,4个桌和一个新空桌的概率,结果坐在了3桌;

故上图发生的概率为,

  • 概率密度函数

关于这个概率的计算前人早就算好了,

2cffcca960b36b1eeab29f502d64c2ba.png

A是

为第
类的数量,即坐在第k个桌的人数,
当前非空的桌数量。
library(nimble)

> rCRP(n=1, conc = 2, size=15)     #alpha也称concentration,即这里的conc参数。15个客人
 [1] 1 2 3 1 1 4 5 1 5 1 3 4 1 1 1
> rCRP(n=1, conc = 2, size=15)    #该函数目前只能一次产生一个随机样本,即 n 只能为1
 [1] 1 2 2 2 3 4 3 2 2 3 2 5 5 3 6
> rCRP(n=1, conc = 2, size=15) 
 [1] 1 2 1 3 1 4 4 2 4 4 2 4 1 4 4
> rCRP(n=1, conc = 2, size=15)
 [1] 1 2 1 2 2 1 1 1 1 1 1 1 1 2 1
#可以看到有时分为5类,有时分为6类,有时分为4类,...

z = c(1,1,2,3,1,3,4,3)
dCRP(z, conc = 1, size=8)  #这里看看上面例子发生的概率。注意size要和z的长度值相等
[1] 9.920635e-05

从上面的分析可知

越大,客人坐到空桌的概率越大
,也就
参数越大,上面产生随机样本时类越多。

如果已知c(1,1,2,3,1,3,4),看上面可以算出

条件概率分布,懒得自己编程,也可以利用dCRP()函数和关系
计算,
a = c()

for(i in 1:5){
  
  z7 = c(1,1,2,3,1,3,4)
  z8 = c(1,1,2,3,1,3,4,i)
  a = c(a,dCRP(z8, conc = 1, size=8)/dCRP(z7, conc = 1, size=7))
}

> a    #即已知前7个情况,第8个客人选择各个餐桌的概率
[1] 0.375 0.125 0.250 0.125 0.125

这里有一个问题是dCRP()可能会很小,看上面size=8时会计算出9.920635e-05,如果size更大概率会更小使得R语言认为该值为0,导致除法没法算,方法自然是计算时使用概率的对数值,dCRP()设置参数log即可,

> dCRP(z1, conc = 1, size=400)   #z1的size=400,即试验了400次
[1] 0

> dCRP(z1, conc = 1, size=i,log=1)  #实际计算时,应该注意这个值为概率对数值
[1] -922.6469

其实可以看到R语言里面很多计算概率的函数都会设置log这个参数,也是预防这个问题。

  • 期望
  • 方差
  • 特征函数

[2]重要性质

7.泊松分布(

)

[1]基本

泊松分布起初是作为二项分布的近似引出的。当二项分布中

很大(计算
困难),而
很小时,取
,有
,其中
  • 密度函数

为随机变量,可取0, 1, 2, ...

密度图,

k = 0:20    #随机变量取值,可取到无穷大,这里只取到20
p = dpois(k,0.8)
plot(k,p)

4d94a92a40a941c62fa0b7e7acfb15f3.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.这个分布的期望方差相等

2.极限分布(

)为正态分布

画个 图看看,

k = 0:50
p = dpois(k,20)  #lambda = 20
plot(k,p)

f4935489fb37425f6428351a9840b42a.png

[3]为何要引入泊松分布来近似二项分布

fd85778ace84daf20a4e18a87ab3d84a.png

[4]泊松分布也可以不由二项分布推出来,而由一些条件独立于二项分布推出来

2505b3e9ae022ed48bd2069afe41c282.png

bf390b8dbf04b07ff73690e97ecb3a1a.png

dab372a9bf0a7913898dbd484dd55c21.png

b40f287dd21d0fbdb08e02239c3f236d.png

[5]广义泊松分布

泊松分布的期望和方差值相等是一个特点,也是一个很强的限制,然而现实生活中大多数据是不符合期望方差相等的,于是创建一个不限制期望方差相等的离散分布。

32a9b8c4fde3349bacd75ebe0f3d8cb4.png

对应期望方差,

dccec4cc35ed36e7bff367b53c0a9e73.png

时就回到了一般的泊松分布。

8.几何分布

[1]基本

进行多次伯努利试验,直到第

​次才首次成功的概率,​
为随机变量可取1,2,...
  • 密度函数

概率密度图,

k = 0:50      #注意,随机变量确实应该从1开始,但R语言中k=0,实际是+1后再代入计算
p = dgeom(k,0.3)  #在使用rgeom()产生的随机数也是从0开始,应+1
plot(k,p)

e1e95ae28bf0140199ea7439b27aee03.png
  • 期望

  • 方差

  • 特征函数

[2]重要性质

1.无记忆性

​表示首次成功时的已经试验的次数。一种情况是第​
次首次成功,概率为
;另一种情况,前​次
没有成功,那么再试验​
次首次成功的概率为
。再试验​
次和直接试验​
次概率相同,好像前​
次没有发生,称为无记忆性。只有几何分布有这种无记忆性。

9.超几何分布

[1]基本

一批产品共有

个,次品共有
个,从中抽取
个,则次品
为个的概率。然而,一般是无法提前知道一批产品中共有多少次品。
  • 密度函数

614aeb616137ade1f5aca119d2bb59b3.png

随机变量为

,可取0, 1, 2, ...,

密度图,

k1 = 0:8
p = dhyper(k1,m=10,n=30,k=8)  #产品中次品10个,好品30个,每次抽8个
plot(k1,p)

4c10547cfa355db153aa408e329cf7ab.png
  • 期望

  • 方差

  • 特征函数

b1dbb2c71e4c1fcb7198420c813c1cb7.png

[2]重要性质

10.负二项分布(又称巴斯卡分布)

[1]基本

多重伯努利事件中,已知成功​

次,则达成成功​
次时的试验次数为
​的概率,第​
次试验刚好达到第​
次成功。随机变量为试验次数
​。如,要成功3次,进行5次试验就出现第3次成功的概率
  • 密度函数

64ceb976c53813d35c0d5aa09b6e9922.png
k1 = 0:10   #计算时,会自动 k1+4 ,于是随机变量取值为,4,5,...,14
p = dnbinom(k1,size=4,prob=0.3)  #伯努利试验成功的概率为0.3,需要成功4次
plot(k1,p)

1074599de1f92702842b52f8ce79e21e.png
  • 期望

  • 方差

  • 特征函数

a429a51d78e9e87840565f2b1412a6d5.png

[2]重要性质

1.期望方差的计算:

巴斯卡分布

是重复独立试验(成功概率
)中成功
次所需要的试验次数 可以把它分解为
,其中
为在前一次成功后,再成功一次所需要的试验次数,
服从几何分布,期望为
,方差是
。得,

“ 常用概率分布总结(2)”接其它分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值