老是记不住各种分布及其意义,每次用时,回查各个课本资料也很麻烦,一些分布的重要性质也是各处散布,经常找不到,故这里做个总结,当作个资料卡用。
内容有各种常见概率分布,一般会写含义、密度函数形式、期望、方差、特征函数,其它性质感觉重要就添加(有趣但感觉没什么用的不会添加)。
先介绍下在R中的使用随机数,密度函数,分布函数,分位函数的命令,使用正态分布为示例。以下不做说明均是使用 R 语言。
- 随机数
从服从某种分布的总体中抽出样本
> rnorm(5)
[1] 0.2858567 -0.7578348 0.6322224 0.6289619 -0.6743083
- 概率密度函数(probability density function pdf)
分布的概率密度函数值
> dnorm(0)
[1] 0.3989423
> dnorm(3.2)
[1] 0.002384088
使用这个函数就可以画出概率密度函数图,
x = seq(-5,5,by=0.01)
y = dnorm(x)
plot(x,y)

- 累积分布函数(cumulative distribution function cdf)
含义为对pdf的积分函数
> pnorm(0)
[1] 0.5
> pnorm(1.3)
[1] 0.9031995
> pnorm(3.6)
[1] 0.9998409
- 分位函数
cdf的反函数,从pdf理解更简单,pdf下方总的面积为1,q(0.9)表示从
> qnorm(0.5)
[1] 0
> qnorm(0.9031)
[1] 1.29942
> qnorm(0.025) #显著性水平为0.05,拒绝域(-1.95,1.95)
[1] -1.959964
用随机数理解,如果随机抽取,90%的数在
> qnorm(0.9)
[1] 1.281552
> sum(rnorm(1e5)<1.281552)/1e5
[1] 0.90048
1.退化分布;2.伯努利分布;3.Categorical 分布;4.二项分布;5.多项分布;6.中餐馆分布
7.泊松分布;8.几何分布;9.超几何分布;10.负二项分布(又称巴斯卡分布);11.正态分布;
12.均匀分布;13.指数分布;14.卡方分布;15.t分布;16.F分布;17.柯西分布;
18.Gamma分布;19.beta分布;20.对数正态分布;21.Weibull分布;22.逻辑分布;23.狄利克雷分布;
1.退化分布(degenerate distribution)
[1]基本
- 密度函数
随机变量值只取常数
- 期望
- 方差
- 特征函数
[2]重要性质
2.伯努利分布
[1]基本
随机变量只取0或1,表示事件不发生或发生,也可以说是事件发生0次或发生1次
- 密度函数
- 期望
- 方差
- 特征函数
[2]重要性质
3.Categorical分布
[1]基本
伯努利分布为一次只有两种可能结果{0,1}的试验,Categorical 分布可以有多种可能{1,2,...,K}。
- 密度函数

- 期望
- 方差
- 特征函数
[2]重要性质
4.二项分布
[1]基本
也称为
- 密度函数
画个密度图看看,
k = 0:15 #随机变量
p = dbinom(k,15,0.7) #15重伯努利,成功概率取0.7
plot(k,p)

- 期望
- 方差
- 特征函数
[2]重要性质
1.几个二项式系数的关系式




2.二项分在
k = 0:100
p = dbinom(k,100,0.4)
plot(k,p)

5.多项分布(Multinomial Distribution)
[1]基本
也可以进行多次Categorical 分布试验,Categorical 分布的事件用
- 密度函数
- 期望
- 方差
- 特征函数
[2]重要性质
1.从离散分布抽iid的样本,样本发生的概率都可以看作是多项分布。多项分布在推导皮尔逊卡方定理、列联表的卡方检验都有用到。是一个重要且很有用的分布。
6.中餐馆分布(Chinese restaurant process CRP )
这是本专栏中“狄利克雷过程和中餐馆过程”的部分内容,里面同时也说明了该分布的用处。
多次伯努利分布(每次试验只有两种结果)得到二项分布,多次Categorical 分布(每次试验有K种结果)得到多项分布。进一步考虑。如果每次试验有无穷种可能结果,进行多次试验又会如何。
[1]基本
把过程想象成客人进入餐馆就坐的过程,餐馆中有无穷个桌子。每一次试验相当于一个客人选择一个桌子坐下。

圆圈表示餐桌,数字表示客人,1号客人选择了第一个餐桌,4号客人选择了第3个餐桌。
看看上图发生的概率,
首先所有桌都没人,1号进入直接坐在1桌;
2号进入,分别以概率
3号进入,分别以概率
...
8号进入,分别以概率
分别为进入第1,2,3,4个桌和一个新空桌的概率,结果坐在了3桌;
故上图发生的概率为,
- 概率密度函数
关于这个概率的计算前人早就算好了,

A是
library(nimble)
> rCRP(n=1, conc = 2, size=15) #alpha也称concentration,即这里的conc参数。15个客人
[1] 1 2 3 1 1 4 5 1 5 1 3 4 1 1 1
> rCRP(n=1, conc = 2, size=15) #该函数目前只能一次产生一个随机样本,即 n 只能为1
[1] 1 2 2 2 3 4 3 2 2 3 2 5 5 3 6
> rCRP(n=1, conc = 2, size=15)
[1] 1 2 1 3 1 4 4 2 4 4 2 4 1 4 4
> rCRP(n=1, conc = 2, size=15)
[1] 1 2 1 2 2 1 1 1 1 1 1 1 1 2 1
#可以看到有时分为5类,有时分为6类,有时分为4类,...
z = c(1,1,2,3,1,3,4,3)
dCRP(z, conc = 1, size=8) #这里看看上面例子发生的概率。注意size要和z的长度值相等
[1] 9.920635e-05
从上面的分析可知
如果已知c(1,1,2,3,1,3,4),看上面可以算出
a = c()
for(i in 1:5){
z7 = c(1,1,2,3,1,3,4)
z8 = c(1,1,2,3,1,3,4,i)
a = c(a,dCRP(z8, conc = 1, size=8)/dCRP(z7, conc = 1, size=7))
}
> a #即已知前7个情况,第8个客人选择各个餐桌的概率
[1] 0.375 0.125 0.250 0.125 0.125
这里有一个问题是dCRP()可能会很小,看上面size=8时会计算出9.920635e-05,如果size更大概率会更小使得R语言认为该值为0,导致除法没法算,方法自然是计算时使用概率的对数值,dCRP()设置参数log即可,
> dCRP(z1, conc = 1, size=400) #z1的size=400,即试验了400次
[1] 0
> dCRP(z1, conc = 1, size=i,log=1) #实际计算时,应该注意这个值为概率对数值
[1] -922.6469
其实可以看到R语言里面很多计算概率的函数都会设置log这个参数,也是预防这个问题。
- 期望
- 方差
- 特征函数
[2]重要性质
7.泊松分布(
[1]基本
泊松分布起初是作为二项分布的近似引出的。当二项分布中
- 密度函数
密度图,
k = 0:20 #随机变量取值,可取到无穷大,这里只取到20
p = dpois(k,0.8)
plot(k,p)

- 期望
- 方差
- 特征函数
[2]重要性质
1.这个分布的期望方差相等
2.极限分布(
画个 图看看,
k = 0:50
p = dpois(k,20) #lambda = 20
plot(k,p)

[3]为何要引入泊松分布来近似二项分布

[4]泊松分布也可以不由二项分布推出来,而由一些条件独立于二项分布推出来




[5]广义泊松分布
泊松分布的期望和方差值相等是一个特点,也是一个很强的限制,然而现实生活中大多数据是不符合期望方差相等的,于是创建一个不限制期望方差相等的离散分布。

对应期望方差,

8.几何分布
[1]基本
进行多次伯努利试验,直到第
- 密度函数
概率密度图,
k = 0:50 #注意,随机变量确实应该从1开始,但R语言中k=0,实际是+1后再代入计算
p = dgeom(k,0.3) #在使用rgeom()产生的随机数也是从0开始,应+1
plot(k,p)

- 期望
- 方差
- 特征函数
[2]重要性质
1.无记忆性
9.超几何分布
[1]基本
一批产品共有
- 密度函数

随机变量为
密度图,
k1 = 0:8
p = dhyper(k1,m=10,n=30,k=8) #产品中次品10个,好品30个,每次抽8个
plot(k1,p)

- 期望
- 方差
- 特征函数

[2]重要性质
10.负二项分布(又称巴斯卡分布)
[1]基本
多重伯努利事件中,已知成功
- 密度函数

k1 = 0:10 #计算时,会自动 k1+4 ,于是随机变量取值为,4,5,...,14
p = dnbinom(k1,size=4,prob=0.3) #伯努利试验成功的概率为0.3,需要成功4次
plot(k1,p)

- 期望
- 方差
- 特征函数

[2]重要性质
1.期望方差的计算:
巴斯卡分布
“ 常用概率分布总结(2)”接其它分布。