
1、真分数、假、带分数。
2、分数的基本性质:
分数的分子分母都乘以或都除以相同的数(零除外),分数的大小不变。
当我们熟练地掌握了这些基本概念后,就应利用它解决实际问题。
1可以化成任何分子分母相同的假分数。
例1、把下面的假分数化成带分数或整数。
解:
例2、填空:
(1)
(2)的分数单位是( ),
里面有( )个
。
3里面有( )个,有( )个
。
里面有( )个1( )个
。
(3)写出一个比大而比
小的分数。
分析解答:
(1),将4里拿出一个“1”,写成分母是5的假分数,为整数部分是3,分数部分是
,则
。
,
将8化成分母是9的假分数:
。
因为,所以
。
将5化成分母是9的假分数为,化成
。
(2)的分数单位是(
),它有(21)个
。
3里面有(24)个,因为
。
有(36)个,
个,因为
。
里面有(7)个1(5)个
。
(3)找出一个比大比
小的分数。
只要把和
的分子、分母分别相加,就是所求
,
就比
大,比
小。
这是什么定理呢?
因为两个不等的分数,如果我们把它们的分子,分母分别相加得到的新分数叫做它们的加成分数,加成分数的值总是在它们的两个分母数之间,根据这个道理你可以写出几百个这样的分数,也不难,只要反复求加成分数就行了。如:和
。
二法:用扩倍法也能找到比大比
小的数若干个。
和
(1)找出它们的最小公倍数:30,则,
,
和
中的比若再扩大2倍,则
,这样
中间就出现了
,还可以扩倍:
,
。这样中间,就出现了
和
。
这些数排队的话为:。
例3、某分数的分母加上2,分子减去2,所得新分数分母分子的差为123,约分后得,求原分数。
分析:所得新分数分子、分母的差为123,这个新分数约分后是,那么分子与分母的差应是
,我们用数量差÷倍数差得到1倍的数为:
,这个3就是原分数的分子。
那么新约分后的分数要还原回去应是:
原题分母加上2,分子减去2,我们用逆推法求,则这个原分数为
。
例4、一个分数分子、分母的和是92,如果分子、分母都减去16,得到的分数化简后是,求原来的分数。
分析:分子分母之和是92,它们都减去16,说明要减去,则还剩
,这个60是新分数分子分母之和,这个新分数化简后是
,说明分子占1份,分母占3份,共有
份。用数量和÷份数和,得到
,则分子为15,分母为45,这时再想还原回去,它们分别减去了16,还要还回来。
例5、一个最简分数,把它的分子扩大4倍,分母缩小3倍后,可化成10,这个最简分数是多少?
分析:一个分数分子扩大4倍,这个分数值就扩大了4倍。
分母缩小3倍,这个分数值反而扩大3倍。
例如,分子扩大4倍,则
分数值扩大4倍。
如分母缩小3倍,,说明分数值反而扩大3倍。
这样这个分数就扩大了倍,结果是10,我们把10缩小12倍就得到了原来的分数值
。










