bp神经网络设置输出变量线性传递函数_原创 | GMDH神经网络债券量化交易

摘要 : 随着金融科技的发展,人工智能算法应用于债券投资领域越来越多,本文通过运用GMDH神经网络对债券投资从预测、量化交易进行分析,验证人工智能在债券投资运用的可行性,通过实证分析发现该策略能够取得较好的投资收益。 关键词: GMDH神经网络  预测  量化交易

一、GMDH神经网络概述

02352df4-ee50-eb11-8da9-e4434bdf6706.svg

GMDH全称Group Method of Data Handling(数据处理的群方法),是一种复杂非线性系统的启发式自组织建模方法,是一种以多项式为基础通过不断筛选组合来辨识非线性系统的模型,它对于高阶非线性系统的辨识有效。具有GMDH组织结构的神经网络称为GMDH神经网络,也称为多项式网络,是前馈神经网络中一种用于预测的实用神经网络,其特点是网络结构不固定,而是在训练过程中不断地改变。相对于传统多层神经网络算法,GMDH算法具有如下特点:

(一)建模过程自组织控制,不需任何初始假设;(二)最优复杂性及高精度预测;(三)能够自组织多层神经网络的每层最佳结构,即能够自动地保留有用的变量和删除多余的变量;(四)能够自动选择最佳的网络层数和每层的神经元数目。正是由于GMDH算法的这些优点,决定了其是一种实用性比较强的预测方法。

二、GMDH神经网络的主要思想

02352df4-ee50-eb11-8da9-e4434bdf6706.svgGMDH神经网络的主要思想是由系统各输入单元交叉组合产生一系列的活动神经元, 其中每一神经元都具有选择最优传递函数的功能, 再从已产生的一代神经元中选择若干与目标变量最为接近的神经元, 被选出神经元强强结合再次产生新的神经元, 重复这样一个优势遗传、竞争生存和进化的过程, 直至新产生的一代神经元都不比上一代更加优秀, 于是最优模型被选出。GMDH神经网络的构建过程主要是一个不断产生活动神经元, 由外部准则对神经元进行筛选, 筛选得到的神经元强强结合再产生下一层神经元,直至具有最佳复杂性的模型被选出的这样一个过程。

a851bbfd874983d0ad83c03a63e94383.png

上图中xi 为初始输入变量, G 称为部分多项式, 它是两个输入变量的完全二次多项式,Yi (k)是由部分模型计算得到的输出, 部分模型是通过拟合实测数据辨识得到的, X i(k) 是中间变量, 是从Yi(k) 中按各层的检验准则筛选出来的, 作为下一层的输入。GMDH网络的结构在训练过程中是不断的变化的,如下图所示的训练后的一个典型的网络结构。

a1a3bfad6317512b27b6c6e52b61e628.png

该网络有 4 个输入和一个输出。GMDH 网络的输入层加工输入信号前向传递到中间层,中间层的每个神经元和前一层的两个神经元对应,因此,输出层的前一层(中间层)肯定只有两个神经元。

三、基于GMDH神经网络债券量化交易步骤与过程

02352df4-ee50-eb11-8da9-e4434bdf6706.svg (一)数据选取与载入选取银行间活跃券10年国开债2017年8月9日至2020年9月11日成交数据进行分析。如下图所示:

f2f5457e44a29ede5765452e7375bdf7.png

数据来源:森浦Quoteboard

(二)收益率预测构建神经元为20个,网络层数为10,训练比率为0.5的GMDH神经网络。(MaxNeurons = 20、MaxLayers = 10、Train Ratio= 0.5)

78818307091abbba9208ddabb621c4a9.png

数据来源:森浦Quoteboard

3ec9dc3aa033b4d8b81bd513b1e9bec3.png

从上图可以看出,GMDH神经网络对10年国开债收益率的预测拟合度0.99842,均方误差为0.0010082BP, 误差呈“两头小,中间大”的正态分布,即预测收益率与实际收益率偏离较大的很少,误差大部分集中在0-5BP之间。 (三)交易策略执行既然GMDH神经网络能够较为准确预测债券收益率,那么可以根据预测结果制定债券量化交易策略。设定交易规则为:当预测未来收益率下行时,即后市看涨,进行买入债券操作(做多);当预测未来收益率上行时,即后市看跌,进行卖出债券操作(做空)。根据该设定条件,进行债券量化交易,并自动计算投资收益、胜率,生成交易日志。

1.计算投资收益

c22655a4a235a497da5790c803d4f9c2.png

数据来源:森浦Quoteboard

从上图可以看出,2017年8月9日至2020年9月11日共交易75次,累计投资收益853.9BP。投资收益率曲线呈斜向上趋势,说明该交易策略持续盈利能力较强。

2.盈亏交易分布

55519b6942951d604b1e1f1fdd9728f3.png

 数据来源:森浦Quoteboard

上图横轴表示交易次数,纵轴表示每次交易的盈亏情况,可以看出2 017年8月9日至2020年9月11日共交易75次,盈利69次,亏损6次。

3.系统评价综合分析

3874693e406f3b4c43bd7e15baf89fa5.png

 数据来源:森浦Quoteboard

从上图可以看出,2017年8月9日至2020年9月11日该交易策略,以多头交易为例,从交易次数来看,共交易37次,盈利35次,亏损2次,胜率94.59%;从多头交易盈亏来看,共盈利461.55BP,亏损5.35BP,盈利占比98.85%;以空头交易为例,共交易37次,盈利33次,亏损4次,胜率89.19%;从空头交易盈亏来看,共盈利403.45BP,亏损5.75BP,盈利占比98.59%。总体来看,该策略共交易75次,盈利69次,总亏损6次,总胜率92%,总盈利865BP,总亏损11.1BP,盈利占比98.73%。

4.交易日志输出

62fcf3d3e491eff8d6dde4501adcbbbf.png

82dc925551b536712d8f5dd19af2f61c.png

e744b64b61a30be5144f2e401045b43f.png

9dac8a00b3930c448dd1bfab4ab1ce1b.png

数据来源:森浦Quoteboard上述实证过程及结论显示,采用GMDH神经网络进行债券量化交易能够有效抓住市场中的交易机会,实时提供交易信号,获得稳定收益,且风险较小。

9b9d960321221b862a1e632613fabf7f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值