智能RGV的动态调度模型.PDF
智能 RGV 的动态调度模型
摘要
在一个智能加工系统中,RGV可以根据指令自动控制移动方向和距离,并完
1
成上下料及清洗物料等任务。对以下三种具体情况:○一道工序的物料加工情况;
2 3
○两道工序的物料加工情况,同时每个物料两道工序依次在不同 CNC 上操作;○
CNC 在加工过程中出现故障,建立一般化的 RGV 动态调度模型及相应求解算法,
并针对具体数据检验模型的实用性和算法的有效性,最终得到 RGV的调度策略和
系统的作业效率。鉴于题目的理想化假设,本文将系统作业效率量化为一个班次
即 8小时内的成料数。
针对单工序无故障情况,我们建立了基于忙碌搜索算法的 RGV 动态调度模
型。该模型采用了面对对象编程的有限状态机设计,其目的是在 RGV处于可调度
状态时,让其尽快找到下一个可上下料的CNC。在 RGV进行决策时,对 CNC的当
前状态进行识别,并预先计算 RGV从当前时刻和位置到各 CNC并完成上下料的时
间差,将其最小值作为目标函数值,并将该值对应的 CNC 作为 RGV 的下一个目
标。在 RGV 重新处于可调度状态时,更新每台 CNC 的状态,重复上述搜索步骤,
并以此生成不同作业参数情况下RGV的最佳动态调度策略,最终提高系统的作业
效率。
针对双工序无故障情况,在单工序情况的基础上,首先给定两类 CNC的排布
方式,考虑加工不同工序物料的工艺路径约束,模拟RGV 的分支决策并进行决策
路径耗时的计算,根据目标函数的结果选定最优 RGV 调度策略。鉴于该算法求解
速度较快,直接采用枚举法计算不同排布下的最大成料数,由此确定不同作业参
数情况下 CNC 的最优排布方式,RGV的最佳路径决策及系统的最高作业效率。
针对有故障情况,在无故障模型的基础上,通过随机数模拟 CNC的故障发生
节点和维修状态持续时间,并采用事件驱动策略,在故障发生时实时更新 CNC和
RGV的状态,重新计算目标函数值,从而在故障干扰下对RGV 进行动态调度。综
合上述三种情况,可以得到适用于不同工作参数、复杂工序情况、可能故障干扰
的 RGV动态调度模型和相应的求解算法。
同时选择将遗传算法和模拟退火算法相融合,得到基于遗传模拟退火算法的
RGV调度模型。输入基本参数,对种群进行初始化和个体适应度计算,利用轮盘
赌进行初始选择,编码和解码染色体,再进行交叉、变异,并利用模拟退火算法
进行再选择,由此得到子代。进行多次迭代,选择最终的收敛结果作为近似最优
解。以单工序无故障情况为例,将两种算法的结果进行比较和分析,由此得出前
一模型对于该问题具有更好的适用性和有效性的结论。
关键字:RGV 动态调度模型 有限状态机 忙碌搜索算法 遗传模拟退火算法
1
一、问题重述
一个完整的智能加工系统由 1辆轨道式自动引导车(RGV)、8 台计算机数控
机床(CNC)、1 条上料传送带、1 条下料传送带、1 条 RGV 直线轨道及其他设备
组成。RGV 能无人驾驶,同时可以在固定的轨道上自由运动,得到指令后,RGV可
自动控制运动方向及距离。由于其带有两只机械手爪、一个机械手臂和物料清洗
槽,所以能够完成上下料盒物料清洗的任务。
1 2
针对以下三种情况:○一道工序的物料加工情况;○两道工序的物料加工情
3
况,每个物料两道工序需依次在不同CNC上操作;○CNC在加工过程中出现故