如何用python计算levenshteindistance_Levenshtein计算相似度距离

本文介绍了如何使用Python中的Levenshtein库计算字符串间的相似度距离,包括编辑距离、汉明距离、莱文斯坦比、Jaro距离和Jaro-Winkler距离,详细解释了各种距离的计算方法和应用场景。
摘要由CSDN通过智能技术生成

使用Levenshtein计算相似度距离,装下模块,调用下函数就好。

拿idf还得自己去算权重,而且不一定准确度高,一般做idf还得做词性归一化,把动词形容词什么全部转成名词,很麻烦。

Levenshtein.distance(str1,str2)

计算编辑距离(也称Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。如

例如将eeba转变成abac:

① eba(删除第一个e)

② aba(将剩下的e替换成a)

③ abac(在末尾插入c)

所以eeba和abac的编辑距离就是3

备注:

b16072dafaddd017a9c4669aafff51e3.png

3c51aa68d3215e07e246f3b55d0beed2.png

http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-levenshtein

1. Levenshtein.hamming(str1, str2)

计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。如

0e4365c8ff227aa7419ee5325e46bc79.png

2. Levenshtein.distance(str1, str2)

计算编辑距离(也成Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。如

a25becaef0f8e73dcb0e89eee9d71591.png

3. Levenshtein.ratio(str1, str2)

计算莱文斯坦比。计算公式  r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离

注意:这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2

这样设计的目的:ratio('a', 'c'),sum=2,按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。

0a58d8b06ed43c474bcc8feb3a0cdc33.png

4. Levenshtein.jaro(s1, s2)

计算jaro距离,

952e42a5356a0a416608fdf248f755eb.png

其中的m为s1, s2的匹配长度,当某位置的认为匹配 当该位置字符相同,或者在不超过

53e5968aa5f772c740785d5220ccc6c7.png

t是调换次数的一半

5. Levenshtein.jaro_winkler(s1, s2)

计算Jaro–Winkler距离

25f9d6607959b77b9d8035bc369bbbec.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值