标签蛋白_用于研究免疫系统的蛋白质标签

aec43a00b39f302f673cb3a4bf783223.png

来自美国爱荷华大学VIB-UGent医学生物技术中心和其他合作者的研究人员开发了一种新的方法来更好地理解我们免疫系统的基本防御机制。中心是ISG15,一种在免疫系统中起作用的小蛋白。有了这种新开发的方法,科学家现在可以识别和研究带有ISG15标记的蛋白质,从而使它们能够揭示其在抗击疾病方面的许多功能,从而有可能开发出新的抗菌药物。这项研究发表在《自然通讯》杂志上。

标记蛋白

蛋白质是由我们的细胞表达的分子,执行所有类型的生物功能。为了保持对表达蛋白的控制,细胞可以在蛋白上附加一个化学“标签”来改变其活性。最著名的蛋白质修饰之一是一种叫做泛素的小蛋白。泛素最初被发现是用来标记蛋白质降解的,现在人们知道它有各种各样的功能。

Francis Impens在VIB-UGent医学生物技术中心和Lilliana Radoshevich(美国爱荷华大学)的实验室研究了一种被称为ISG15的泛素样修饰。像泛素一样,ISG15可以附着在靶蛋白上。然而,ISG15的分子功能是难以捉摸的,因为修饰后的蛋白质的身份及其确切的修饰位点仍然未知。

Impens教授(VIB-UGent)评论说:“ISG15和泛素在它们的末端共享相同的氨基酸序列,而这些修饰词恰好附着在目标蛋白上。因此,由ISG15修饰的蛋白质所产生的肽与由泛素修饰的蛋白质所产生的肽具有相同的标记。因此,我们利用所开发的识别泛素修饰位点的技术来识别ISG15修饰位点。”

发现ISG15

与泛素不同,ISG15在正常情况下是缺失的。ISG15只在病毒或细菌感染等压力下表达。因此,他们必须用感染模型来补充他们的方法。Radoshevich教授将感染李斯特菌的小鼠和这些动物的肝脏用Impens教授开发的研究泛素修饰位点的工具进行ISG15分析。

来自Impens实验室的Fabien Thery是这项研究的第一作者之一,他解释说:“作为感染模型,我们选择了单核增生李斯特菌。李斯特菌是一种从食物中产生的细菌病原体,隐藏在宿主细胞的免疫系统中,导致了“法国奶酪病”。

第一作者之一、来自Radoshevich实验室的张一峰详细阐述道:“肝脏是一个非常有趣的器官:它在新陈代谢中起着中心作用,但它同时也是一个血液过滤器,用来检测和清除任何潜在的威胁,如病毒和细菌。”

这两个实验室首次报告在细菌感染期间发现了超过400个蛋白质靶点上的近千个ISG15位点。

Radoshevich教授说:“我们发现ISG15针对的是许多参与代谢过程的酶,但同时也针对的是自噬的关键调节因子,这是一种针对细胞内营养物质缺乏的反应过程。它导致细胞成分的破坏,从而产生新的能量来源,促进细胞存活。或者,自噬可以作为一种抗菌策略。ISG15调节这一过程的发现是最令人兴奋的。”

这项研究揭示了ISG15、细胞代谢和自噬之间的新联系。作者已经开始使用他们的方法来研究ISG15在感染其他病原体(如流感病毒或柯萨奇病毒)时的作用。总之,这些研究可能揭示了我们免疫系统的抗菌途径,可以用来设计新的药物。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值