二项分布的期望方差证明_二项分布的期望和方差

本文介绍了二项分布及其期望和方差的证明过程,通过将二项分布分解为多个独立的0-1分布随机变量之和,展示了期望和方差的计算方法。每个0-1分布的随机变量以概率p取1,以概率1-p取0,从而得出E(Xi)=p和D(Xi)=p(1-p)。进一步推导得二项分布的期望EX=np和方差DX=np(1-p)。这为理解和应用二项分布提供了基础。
摘要由CSDN通过智能技术生成

二项分布的期望和方差:二项分布期望np,方差np(1-p);0-1分布,期望p方差p(1-p)。

证明过程

最简单的证明办法是:X能够分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:

X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.

P{Xi=0}=1-p,P(Xi=1)=p.

EXi=0*(1-p)+1*p=p,

E(Xi^2)=0^2*(1-p)+1^2*p=p,

DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).

EX=EX1+EX2+...+EXn=np,

DX=DX1+DX2+...+DXn=np(1-p).

好了,关于二项分布的期望和方差这个问题学好网永彬就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!我曾经也一味地以为,学习是痛苦的。在题海中,我无法自拔。在书堆中,我欲哭无泪。我只是拼命地写着,拼命地记着,拼命地应付考试,仅此而已。但现在,我告诉自己,学习是快乐的。在学习的花香中,我微笑着,我沉醉着。

责任编辑:永彬

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二项分布是一种离散概率分布,描述了在一系列独立的 Bernoulli 试验中,成功次数为固定值 r 时,失败次数的概率分布。设 X 是负二项分布,成功概率为 p,失败概率为 1-p,则 X 的概率质量函数为: P(X=k)=C(k-1,r-1) * p^r * (1-p)^(k-r) 其中,C(k-1,r-1)是组合数,表示在 k-1 个 Bernoulli 试验中,成功了 r-1 次的方式数。 首先,我们来证明期望 E(X) = r/p。根据期望的定义,有: E(X) = ∑(k=1到∞) k * P(X=k) = ∑(k=r到∞) k * C(k-1,r-1) * p^r * (1-p)^(k-r) = r * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) + ∑(k=r+1到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) 对于第一项,我们可以将 C(k-1,r-1) 展开为 (k-1)!/[(r-1)!(k-r)!],得到: ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r到∞) [(k-1)!/[(r-1)!(k-r)!]] * p^r * (1-p)^(k-r) = r * ∑(k=r到∞) [(k-1)!/[(r-1)!(k-r+1)!]] * p^r * (1-p)^(k-r+1) = r * p * ∑(k=r-1到∞) [(k)!/[(r-1)!(k-r+1)!]] * p^(r-1) * (1-p)^(k-r+1) = r * p * ∑(k=r-1到∞) C(k-1,r-2) * p^(r-1) * (1-p)^(k-r+1) = r * p * 1 (根据二项式定理,∑(k=0到∞) C(k,r-1) * x^k = (1+x)^r-1) = r/p 对于第二项,我们可以将 C(k-1,r-1) 展开为 (k-1)!/[(r-1)!(k-r)!],得到: ∑(k=r+1到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r+1到∞) [(k-1)!/[(r-1)!(k-r)!]] * p^r * (1-p)^(k-r) = p^r * (1-p) * ∑(k=r到∞) [(k)!/[(r-1)!(k-r)!]] * p^(r-1) * (1-p)^(k-r) = p^r * (1-p) * ∑(k=r到∞) C(k,r-1) * p^(r-1) * (1-p)^(k-r) = r * (1-p)/p 因此,E(X) = r/p + r * (1-p)/p = r/p。 接下来,我们来证明方差 Var(X) = r(1-p)/p^2。根据方差的定义,有: Var(X) = E(X^2) - [E(X)]^2 = ∑(k=1到∞) k^2 * P(X=k) - [r/p]^2 = ∑(k=r到∞) k^2 * C(k-1,r-1) * p^r * (1-p)^(k-r) - [r/p]^2 对于第一项,我们可以将 k^2 * C(k-1,r-1) 展开为 [(k-1)!/(r-1)!(k-r)!] * k * [(k-1)+(r-1)],得到: ∑(k=r到∞) k^2 * C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r到∞) [(k-1)!/(r-1)!(k-r)!] * k * [(k-1)+(r-1)] * p^r * (1-p)^(k-r) = r * p * ∑(k=r到∞) [(k)!/(r-1)!(k-r+1)!] * [(k-1)+(r-1)] * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r+1到∞) [(k-1)!/(r-1)!(k-r)!] * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) [(k)!/(r-1)!(k-r+1)!] * k * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) [(k-1)!/(r-1)!(k-r)!] * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) C(k-1,r-2) * (k-r+1+r-1) * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) [C(k,r-1)-C(k-1,r-2)] * k * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = r * p * [r*2^(r-2)*(1-p)^(r-1) + ∑(k=r到∞) C(k-1,r-1) * k * p^(r-1) * (1-p)^(k-r+1)] + r^2 * [1-p]/p 对于第二项,我们可以利用 E(X) = r/p,得到: [r/p]^2 = r^2/p^2 综上所述,有: Var(X) = r/p * [r*2^(r-2)*(1-p)^(r-1) + ∑(k=r到∞) C(k-1,r-1) * k * p^(r-1) * (1-p)^(k-r+1)] + r^2 * [1-p]/p - r^2/p^2 = r(1-p)/p^2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值