二项分布的期望方差证明_二项分布方差的详细证明

这篇博客详细介绍了如何证明二项分布的方差,通过利用组合数公式、二项式定理以及二项分布的期望公式,逐步展开并简化求和表达式,最终得出方差为 (np(1-p)) 的结论。
摘要由CSDN通过智能技术生成

前置技能

从组合数公式可以直接推出: \(k\mathrm{C}_n^k = n\mathrm{C}_{n-1}^{k-1}\)

同样地,你可以得到 \((k-1)\mathrm{C}_{n-1}^{k-1} = (n-1)\mathrm{C}_{n-2}^{k-2}\) (禁止套娃)

你还要熟悉二项式定理:

\[(p+q)^n = \sum_{k=0}^n \mathrm{C}_n^k p^k q^{n-k}

\]

你还要知道二项分布的概率和期望公式:

若 \(X\sim B(n,p)\),则 \(P(x = k) = C_n^k \ p^k \ (1-p)^{n- k}\),\(E(X) = np\)

回归正题

第一步当然是定义式啦

\[\begin{aligned}

D(X) &=\sum_{k=0}^{n}\left[k-E(X)\right]^{2} \cdot p_{k} \\

&=\sum_{k=0}^{n}(k-n p)^{2} \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\

\end{aligned}

\]

看到 \((k-np)^2\) 是不是就很想把它拆开?

\[\begin{aligned}

D(X) &=\sum_{k=0}^{n}(k^2-2knp+n^2p^2) \cdot \mathrm{C}_{n}^{k} p^{k} q^{n-k} \\

& =\color{Red}{\sum_{k=0}^{n} k^{2} \cdot \mathrm{C}_{n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值