word2vec python 代码实现,word2vec初探(用python简单实现)

本文介绍了使用Python实现word2vec的步骤,包括数据爬取、预处理、分词以及使用gensim库进行模型训练。通过训练,展示了如何找到近义词并探讨了参数选择对模型效果的影响。内容适合NLP初学者了解word2vec的基本应用。
摘要由CSDN通过智能技术生成

为什么要用这个?

因为看论文和博客的时候很常见,不论是干嘛的,既然这么火,不妨试试.

如何安装

从网上爬数据下来

对数据进行过滤、分词

用word2vec进行近义词查找等操作

运行结果:

8d3b2b89423e2d77e4961a36b29a1c87.png

需要安装的包,可以用pycharm的preference:

eb1fc0a47b7446d9c301bae813d50f47.png

点「+」加号

d0739b5bc730b3506bf2b81ad1d578a1.png

同样,点「+」加号。过一会儿会提示你安装是否成功的。

整个的文件结构:

a4aa8783fd01fe2536cec33549712725.png

-语料(网上爬下来的)

-自定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值