color属性 python_Python可视化17seborn箱图boxplot

本文介绍了如何使用Python的Seaborn库进行箱线图绘制,详细讲解了如何设置箱图的颜色、异常值、上下横线、箱子外观以及均值显示等属性,并提供了分组箱图的绘制方法。
摘要由CSDN通过智能技术生成

"pythonic生物人"的第62篇分享34ed061c39fb41dd865ff16e934d1507.png111c3331c0d615527e24bacc84afe292.png111c3331c0d615527e24bacc84afe292.png

本文系统详解利用python中seaborn.boxplot绘制箱图boxplot。seaborn.boxplot是matplotlib.pyplot.boxplot的封装版,更个性化的设置请研究matplotlib.pyplot.boxplot

本文将了解到什么?

1、数据集准备及箱图简介2、seaborn.boxplot箱图外观设置默认参数绘制箱图  箱图异常值属性设置   异常值关闭显示  异常值marker大小设置  异常值marker形状、填充色、轮廓设置箱图上下横线属性设置   上下横线关闭  上下横线颜色、线型、线宽等设置箱图上下须线属性设置箱图箱子设置  箱子设置缺口  箱子不填充颜色   箱子外框、内部填充色 箱图中位数线属性设置 箱图均值属性设置   均值使用点显示、设置点形状、填充色  均值使用线显示 、线型、颜色设置箱图中所有线属性设置 3、seaborn.boxplot分组箱图分组绘图(方法一)分组绘图(方法二)箱子颜色设置   设置箱子颜色  设置箱子颜色饱和度箱子间距设置 每个小组再按子组绘图 按顺序绘制箱图

正文开始啦

6f093a41ef4fc6c85f5a9657b72a8a25.png
一个箱图的主要组成原件

线图用来展现数据的分布,能直观的展示数据的关键指标(如下四分位数、上四分位数、中位数、最大值、最小值、离散点/异常值点);箱线图可直观展示不同组数据的差异;下面详细介绍python中matplotlib及seaborn库绘制箱图。

1、数据集准备及箱图简介

还是使用鸢尾花数据集iris,iris详细介绍请戳:Python可视化|matplotlib10-绘制散点图scatter

import matplotlib.pyplot as pltimport numpy as npimport pandas as pdfrom pandas import Series,DataFrameimport seaborn as snsimport palettablefrom sklearn import datasets 
plt.rcParams['font.sans-serif']=['SimHei']  # 用于显示中文
plt.rcParams['axes.unicode_minus'] = False  # 用于显示中文
iris=datasets.load_iris()
x, y = iris.data, iris.target
pd_iris = pd.DataFrame(np.hstack((x, y.reshape(150, 1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class'] )

查看数据集样子? 044ce22692276a5f56bfdaf7f2cf85cc.pngpd_iris["sepal width(cm)"]简单统计,后文主要使用该列数据集绘图

pd_iris["sepal width(cm)"].describe()#以上各个值其实都可以使用describe函数查看

count    150.000000
mean       3.054000
std        0.433594
min        2.000000
25%        2.800000(下四分位数,25% 的数据小于等于此值。)
50%        3.000000(中位数,50% 的数据小于等于此值。)
75%        3.300000(上四分位数,75% 的数据小于等于此值。)
max        4.400000
Name: sepal width(cm), dtype: float64

上面注释部分很好的解释了下面箱图中四分位数的含义  9a801ea0dbcdff75b5aac54c626f5d6a.png


2、seaborn.boxplot箱图外观设置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值