python的matplotlib文档_python Matplotlib使用笔记

matplotlib是python的一个可视化库,一般配合pandas来使用。

matplotlib默认是没有中文显示的,所以首先需要配置中文字体,

中文显示:

matplotlib.rc('font',family='Microsoft YaHei',size=10, weight='bold')

常用统计图:

1.折线图:(变化)plot

以折线的上升或下降来表示统计数量的增减变化的统计图

特点:能够展示数据的变化趋势,反应事物的变化情况(变化)

2.直方图:(统计)hist

由一系列高度不等的纵向条纹或线段表示数据分布的情况,

一般用横轴表示数据范围,纵轴表示分布情况。

特点:绘制连续性的数据,展示一组或者多组数据的分布状况(统计)

3.条形图:(统计)bar|barh

排列在工作表的列或行中的数据可以绘制到条形图中。

特点:绘制离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别(统计)

a.纵向条形 barplt.bar(x轴,y轴,width=0.5) # width设置条形宽度

b.横向条形 barhplt.barh(x轴,y轴,height=0.5) # height设置条形高低

# 例子:

matplotlib.rc('font',family='Microsoft YaHei',size=11)

plt.figure(figsize=(10,8),dpi=80)

x = range(1,21)

y1 = [random.randrange(5,15) for i in range(20)]

y2 = [random.randrange(5,25) for i in range(20)]

plt.barh(x,y1,alpha=0.8,label='a')

plt.barh(x,y2,alpha=0.5,label='b')

plt.xticks(list(range(0,30,5)))

plt.yticks(list(range(30)))

plt.grid(alpha=0.5)

plt.legend(loc=1)

plt.savefig('./ce.png')

plt.show()

4.散点图:(分布规律)scatter

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

plt.scatter(x轴,y轴)

# 例子:

matplotlib.rc('font',family='Microsoft YaHei',size=11)

plt.figure(figsize=(10,8),dpi=80)

x = range(1,21)

y1 = [random.randrange(5,15) for i in range(20)]

y2 = [random.randrange(5,25) for i in range(20)]

plt.scatter(x,y1,label='1')

plt.scatter(x,y2,label='2')

plt.xticks(list(range(0,30,5)))

plt.yticks(list(range(25)))

plt.grid(alpha=0.5)

plt.legend(loc=1)

plt.savefig('./ce.png')

plt.show()

常用操作:

1.设置图片大小:

plt.figure(figsize=(20,8),dpi=80)

2.描述信息,x轴和y轴表示什么,图表表示什么

plt.title(标题,fontsize=20)

plt.xlabel(x轴描述信息,fontsize=15)

plt.ylabel(y轴描述信息,fontsize=15)

3.调整x或者y轴的刻度的间距

plt.xticks()

# xticks参数:

ticks= 实际刻度(列表),

labels=显示刻度(列表),

rotation=90显示文字旋转度数

plt.xticks(ticks=[1, 2, 3],labels=['a', 'b', 'c'],rotation=90) # 传入刻度列表

plt.yticks(ticks=[1, 2, 3],labels=['a', 'b', 'c'],rotation=90)

4.线条的样式

plt.plot(x,y)

# 参数:

# color = 'r' # 线条颜色

# linestyle = ''--" # 线条风格

# linewidth=5 # 线条粗细

# alpha=0.5 # 线条透明度

5.图片保存到本地文件

plt.savefig('plt.svg')

# svg格式以矢量图格式保存

6.绘制网格:

plt.grid()

# 参数:

# alpha=0.5 #设置网格透明度为0.5即50%

7.一个图上绘制多个图形(plt多次plot即可)

plt.plot(x,y1,label='自己')

plt.plot(x,y2,label='同桌')

8.plt.legend() # 图例

# 参数:

plt.legend()

# loc=0 # 图例的位置

参考^这是windows下的设置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值