matlab实现id3,MATLAB简单实现ID3

再看《MATLAB数据分析与挖掘实战》,简单总结下今天看到的经典的决策树算法——ID3.

ID3:在决策树的各级节点上,使用信息增益的方法作为属性的选择标准,来帮助确定生成每个节点时所应采取的合适属性。

关于信息增益,知乎上这个回答也讲的很不错。信息增益=熵 - 条件熵,信息增益越大,说明该条件对事件确定性的影响越大。所以,在决策树中,我们将信息增益值作为测试属性。把测试属性取值相同的样本划为同一个子样本集。

基本流程:

·对当前样本,计算所有属性的信息增益,并将信息增益作为测试属性;

·若子样本集的类别属性只含有单个属性,则分支为叶子节点,判断其属性值并贴上相应的,然后返回调用处;否则对子样本集递归调用算法。

原理看起来有点复杂,其实用MATLAB实现起来及其简单:

%% 使用ID3决策树算法预测销量高低

clear;

% 参数初始化

inputfile = ‘F:\Techonolgoy\MATLAB\file\MTALAB数据分析与挖掘实战\Datasets\chapter5\chapter5\示例程序\data\sales_data.xls‘; % 销量及其他属性数据

%% 数据预处理

disp(‘正在进行数据预处理...‘);

[matrix,attributes_label,attributes] = id3_preprocess(inputfile);

%% 构造ID3决策树,其中id3()为自定义函数

disp(‘数据预处理完成,正在进行构造树...‘);

tree = id3(matrix,attributes_label,attributes);

%% 打印并画决策树

[nodeids,nodevalues] = print_tree(tree);

tree_plot(nodeids,nodevalues);

disp(‘ID3算法构建决策树完成!‘);

ID3缺点:

·偏向选择取值最多的即所谓的高度分支属性,不一定最优。

·只能处理离散属性。

原文:http://www.cnblogs.com/buzhizhitong/p/5880184.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是MATLAB实现ID3算法的基本步骤: 1. 数据预处理:将原始数据进行清理和转换,使其适合用于ID3算法。 2. 计算信息熵:使用信息熵来度量数据集的无序程度。 3. 计算信息增益:计算每个特征对于分类的贡献程度。 4. 选择最优特征:选择信息增益最大的特征作为当前节点的特征。 5. 递归构建决策树:将当前节点的数据集按照选定特征分成不同的子集,并对每个子集递归执行上述步骤,直到构建完整个决策树。 下面是MATLAB代码实现: ```matlab function [tree, varargout] = id3(data, labels, varargin) % Check input arguments narginchk(2, Inf); % Create variable input parser p = inputParser; % Add optional arguments addParameter(p, 'minLeafSize', 1, @isnumeric); addParameter(p, 'maxDepth', Inf, @isnumeric); addParameter(p, 'splitCriterion', 'entropy', @(x) ismember(x, {'entropy', 'gini', 'misclass'})); % Parse input arguments parse(p, varargin{:}); % Initialize variables minLeafSize = p.Results.minLeafSize; maxDepth = p.Results.maxDepth; splitCriterion = p.Results.splitCriterion; % Get unique class labels classes = unique(labels); % Initialize tree tree = struct('var', [], 'threshold', [], 'left', [], 'right', [], 'class', []); % Check stopping criteria if numel(classes) == 1 || size(data, 1) < minLeafSize || maxDepth == 0 % If all samples belong to the same class or the data set is too small to split, assign the majority class to the leaf node tree.class = mode(labels); varargout{1} = tree; return end % Calculate entropy of current node p = histcounts(labels, [classes; max(classes)+1]); p = p/sum(p); entropyS = -sum(p.*log2(p)); % Initialize variables to store best split bestGain = 0; bestVar = []; bestThreshold = []; % Loop over variables to find best split for j = 1:size(data, 2) % Sort data by current variable [x, idx] = sort(data(:,j)); y = labels(idx); % Loop over possible thresholds for i = 1:numel(classes)-1 % Calculate gain of current split switch splitCriterion case 'entropy' % Entropy-based information gain pL = histcounts(y(1:i), [classes; max(classes)+1]); pL = pL/sum(pL); entropyL = -sum(pL.*log2(pL)); pR = histcounts(y(i+1:end), [classes; max(classes)+1]); pR = pR/sum(pR); entropyR = -sum(pR.*log2(pR)); gain = entropyS - (i/size(data,1))*entropyL - ((size(data,1)-i)/size(data,1))*entropyR; case 'gini' % Gini impurity-based information gain pL = histcounts(y(1:i), [classes; max(classes)+1]); pL = pL/sum(pL); giniL = 1 - sum(pL.^2); pR = histcounts(y(i+1:end), [classes; max(classes)+1]); pR = pR/sum(pR); giniR = 1 - sum(pR.^2); gain = entropyS - (i/size(data,1))*giniL - ((size(data,1)-i)/size(data,1))*giniR; case 'misclass' % Misclassification error-based information gain pL = histcounts(y(1:i), [classes; max(classes)+1]); pL = pL/sum(pL); misclassL = 1 - max(pL); pR = histcounts(y(i+1:end), [classes; max(classes)+1]); pR = pR/sum(pR); misclassR = 1 - max(pR); gain = entropyS - (i/size(data,1))*misclassL - ((size(data,1)-i)/size(data,1))*misclassR; otherwise error('Invalid split criterion'); end % Update best split if gain > bestGain bestGain = gain; bestVar = j; bestThreshold = mean([x(i), x(i+1)]); end end end % Check if split was successful if bestGain == 0 % If no split was made, assign the majority class to the leaf node tree.class = mode(labels); varargout{1} = tree; return end % Create new tree node tree.var = bestVar; tree.threshold = bestThreshold; % Split data into left and right branches idxL = data(:,bestVar) <= bestThreshold; idxR = ~idxL; % Recursively grow left and right branches tree.left = id3(data(idxL,:), labels(idxL), 'minLeafSize', minLeafSize, 'maxDepth', maxDepth-1, 'splitCriterion', splitCriterion); tree.right = id3(data(idxR,:), labels(idxR), 'minLeafSize', minLeafSize, 'maxDepth', maxDepth-1, 'splitCriterion', splitCriterion); % Return tree varargout{1} = tree; ``` 该函数接受三个输入参数:数据矩阵、标签向量和可选参数。可选参数包括:最小叶子大小、最大深度和分裂标准。输出参数为决策树结构体。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值