qr算法求特征值matlab_QR迭代生成特征值矩阵不是上三角阵?

在使用QR算法求解特征值时,通常会得到一个拟上三角矩阵,而非严格的上三角矩阵。在某些情况下,矩阵会呈现Schur分块上三角形式,对角块按特征值大小排列。然而,对角块以上及2阶块的元素可能不收敛,需要额外计算。这种情况源于实Schur分解定理,其中矩阵被转化为Hessenberg形式以减少计算。QR迭代正是应用这一理论,生成Schur分块上三角矩阵。
摘要由CSDN通过智能技术生成

在求特征值的时候,我们通常QR迭代后就是一个拟上三角矩阵,但不一定是上三角矩阵,还要留意这个拟字。

例如:

607126aa33c421e999485f814e09ba7d.png

Q32竟然不是0?

在一定条件下,由QR算法生成的序列{Ak}收敛为Schur分块上三角形,对角块按特征值的模从大到小排列。

但有特殊情况,就是我们今天遇到的,当收敛结果为Schur分块上三角形时,序列{Ak}的对角块以上的元素以及2阶块的元素不一定收敛。

Q22、Q23、Q32、Q33构成了一个二阶矩阵。需要继续求得该二阶矩阵的特征值,补充到原矩阵的特征值中即可。

f43c0b888682f133ea73a0f03d681bed.png

为什么会这样?

首先,回到实Schur分解定理,对于任意A方阵,存在这样的正交矩阵U

equation?tex=U%5E%7BT%7DAU%3DT

equation?tex=UTU%5E%7BT%7D%3DA

其中U是酉矩阵,这里特指正交矩阵,T是一个Schur分块上三角矩阵(上三角和对角阵是特殊情况),如下图所示:

equation?tex=%5Cbegin%7Barray%7D%7B1%7D+T_%7B11%7D%26T_%7B12%7D%26+...%26T_%7B1m%7D+%5C%5C+%26T_%7B22%7D%26...%26T_%7B2m%7D+%5C%5C+%26%26...%26...+%5C%5C+%26%26%26T_%7Bmm%7D+%5Cend%7Barray%7D

其中对角块

equation?tex=T_%7Bii%7D (i=1,2,...,m)为一阶或二阶方阵,每一个一阶对角块即为A的实特征值,每一个二阶对角块的两个特征值是A的一对共轭复特征值。

从文章开头截图我们可以看出,我们已经将A转化成Hessenberg的形式,主要是为了节省运算量。

QR迭代也是Schur分解定理的应用,所以生成的是Schur分块上三角矩阵。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值