先前的计算由于仓促,存在些计算错误,现更正如下:
(1)先做个准备,求一个圆柱体被一个斜平面截取后的体积V和重心坐标的偏移量y*。
设圆柱面轴线垂直于XOY平面,直径为d,斜平面垂直于YOZ平面,与圆柱底面夹角为θ,被截后圆柱轴线高为H,则由重积分计算得到V=π*d^2*H/4,注意到它的体积与角度θ无关。由于对称性,其重心应在被截圆柱体的轴向对称面上即YOZ平面上,且由轴心向斜面高的方向偏移距离(y轴方向的移动量)y*=d^2*tgθ/(16*H) 。
(2) 现在回到原来的问题。
以弯头的一端的底面为XOY平面,则另一个底面为XOZ面。设弯头的外径为d,壁厚为t,其轴线的曲率半径为R,密度为ρ。以轴线的曲率中心为基准取一个圆心角为dφ的微元体积dV,依据(1)中的结论可以得到:
弯头总质量M=Integral{ρ*dV,V}
=Integral{ρ*π/4*[d^2-(d-2*t)^2]*R*dφ, 0, π/2}
=π^2*ρ/2*(d*t-t^2)*R
由于对称性,弯头的重心一定在90度弯头中间的45度的径向对称面上,其位置相对于圆孔轴线的曲率中心的极坐标r*为:
r*=Integral{{R+d^2*tg(dφ)/[16*(R*dφ)]}*[π/4*d^2*(R*dφ)*ρ], 0, π/2}/M
={[R+d^2/(8*R)]*π^2*ρ*d^2*R/8}/[π^2*ρ/2*(d*t-t^2)*R]
=[R+d^2/(8*R)]*d^2/[4*(d*t-t^2)]
注释:
(1)本计算的思路是:既然弯头体积微元为一个斜切的圆柱体,那就先求出斜切的圆柱体的体积V以及重心在半径方向上的偏移量,然后以此为计算弯头体积微元的基础;
(2)r*的计算是先计算出微元体积dV的质量ρ*dV对轴线曲率中心的半径极坐标矩r*ρ*dV,然后对其求积分,最后再除以总质量M即得到r*;
(3)前面的准备中的y*为相对于圆柱体的轴中心的偏移量,因此后面的r*的计算中要在此基础上再加上一个R,算得的即为相对于曲率中心的极坐标。
计算完毕。