弯头重心用计算机计算,弯头重心 - 机械 - 机械设计 - 小木虫论坛-学术科研互动平台...

先前的计算由于仓促,存在些计算错误,现更正如下:

(1)先做个准备,求一个圆柱体被一个斜平面截取后的体积V和重心坐标的偏移量y*。

设圆柱面轴线垂直于XOY平面,直径为d,斜平面垂直于YOZ平面,与圆柱底面夹角为θ,被截后圆柱轴线高为H,则由重积分计算得到V=π*d^2*H/4,注意到它的体积与角度θ无关。由于对称性,其重心应在被截圆柱体的轴向对称面上即YOZ平面上,且由轴心向斜面高的方向偏移距离(y轴方向的移动量)y*=d^2*tgθ/(16*H) 。

(2) 现在回到原来的问题。

以弯头的一端的底面为XOY平面,则另一个底面为XOZ面。设弯头的外径为d,壁厚为t,其轴线的曲率半径为R,密度为ρ。以轴线的曲率中心为基准取一个圆心角为dφ的微元体积dV,依据(1)中的结论可以得到:

弯头总质量M=Integral{ρ*dV,V}

=Integral{ρ*π/4*[d^2-(d-2*t)^2]*R*dφ, 0, π/2}

=π^2*ρ/2*(d*t-t^2)*R

由于对称性,弯头的重心一定在90度弯头中间的45度的径向对称面上,其位置相对于圆孔轴线的曲率中心的极坐标r*为:

r*=Integral{{R+d^2*tg(dφ)/[16*(R*dφ)]}*[π/4*d^2*(R*dφ)*ρ], 0, π/2}/M

={[R+d^2/(8*R)]*π^2*ρ*d^2*R/8}/[π^2*ρ/2*(d*t-t^2)*R]

=[R+d^2/(8*R)]*d^2/[4*(d*t-t^2)]

注释:

(1)本计算的思路是:既然弯头体积微元为一个斜切的圆柱体,那就先求出斜切的圆柱体的体积V以及重心在半径方向上的偏移量,然后以此为计算弯头体积微元的基础;

(2)r*的计算是先计算出微元体积dV的质量ρ*dV对轴线曲率中心的半径极坐标矩r*ρ*dV,然后对其求积分,最后再除以总质量M即得到r*;

(3)前面的准备中的y*为相对于圆柱体的轴中心的偏移量,因此后面的r*的计算中要在此基础上再加上一个R,算得的即为相对于曲率中心的极坐标。

计算完毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值